Suppr超能文献

Ti-6Al-2Sn-4Zr-6Mo合金的激光粉末床熔融及基于深度学习方法的性能预测

Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo Alloy and Properties Prediction Using Deep Learning Approaches.

作者信息

Hassanin Hany, Zweiri Yahya, Finet Laurane, Essa Khamis, Qiu Chunlei, Attallah Moataz

机构信息

School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK.

Faculty of Science, Engineering and Computing, Kingston University London, London SW15 3DW, UK.

出版信息

Materials (Basel). 2021 Apr 19;14(8):2056. doi: 10.3390/ma14082056.

Abstract

Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its high strength, fatigue, and toughness properties, making it a popular material for aerospace and biomedical applications. However, no studies have been reported on processing this alloy using laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo alloy. The process optimisation results showed that near-full densification is achieved in Ti-6Al-2Sn-4Zr-6Mo alloy samples fabricated using an energy density of 77-113 J/mm. Furthermore, the hardness of the builds was found to increase with increasing the laser energy density. Porosity and the hardness measurements were found to be sensitive to the island size, especially at high energy density. Hot isostatic pressing (HIP) was able to eliminate the porosity, increase the hardness, and achieve the desirable α and β phases. The developed model was validated and used to produce process maps. The trained deep learning neural network model showed the highest accuracy with a mean percentage error of 3% and 0.2% for the porosity and hardness. The results showed that deep learning neural networks could be an efficient tool for predicting materials properties using small data.

摘要

Ti-6Al-2Sn-4Zr-6Mo是最重要的钛合金之一,其特点是具有高强度、抗疲劳性和韧性,这使其成为航空航天和生物医学应用中的常用材料。然而,尚未有关于使用激光粉末床熔融工艺加工这种合金的研究报道。本文引入了一种深度学习神经网络(DLNN),以合理化并预测Ti-6Al-2Sn-4Zr-6Mo合金激光粉末床熔融过程中的致密化和硬度情况。工艺优化结果表明,使用77-113 J/mm的能量密度制造的Ti-6Al-2Sn-4Zr-6Mo合金样品实现了近完全致密化。此外,还发现构建体的硬度随着激光能量密度的增加而提高。孔隙率和硬度测量结果被发现对岛状尺寸敏感,尤其是在高能量密度下。热等静压(HIP)能够消除孔隙率、提高硬度并获得理想的α相和β相。所开发的模型经过验证并用于生成工艺图。经过训练的深度学习神经网络模型显示出最高的准确性,孔隙率和硬度的平均百分比误差分别为3%和0.2%。结果表明,深度学习神经网络可以成为使用少量数据预测材料性能的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba40/8073357/d7e6730890f1/materials-14-02056-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验