Karuppiah Chelladurai, Wei Chao-Nan, Karikalan Natarajan, Wu Zong-Han, Thirumalraj Balamurugan, Hsu Li-Fan, Alagar Srinivasan, Piraman Shakkthivel, Hung Tai-Feng, Li Ying-Jeng Jame, Yang Chun-Chen
Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
Nanomaterials (Basel). 2021 Apr 16;11(4):1025. doi: 10.3390/nano11041025.
A novel design and synthesis methodology is the most important consideration in the development of a superior electrocatalyst for improving the kinetics of oxygen electrode reactions, such as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in Li-O battery application. Herein, we demonstrate a glycine-assisted hydrothermal and probe sonication method for the synthesis of a mesoporous spherical LaCeFeMnO perovskite particle and embedded graphene nanosheet (LCFM(8255)-gly/GNS) composite and evaluate its bifunctional ORR/OER kinetics in Li-O battery application. The physicochemical characterization confirms that the as-formed LCFM(8255)-gly perovskite catalyst has a highly crystalline structure and mesoporous morphology with a large specific surface area. The LCFM(8255)-gly/GNS composite hybrid structure exhibits an improved onset potential and high current density toward ORR/OER in both aqueous and non-aqueous electrolytes. The LCFM(8255)-gly/GNS composite cathode (ca. 8475 mAh g) delivers a higher discharge capacity than the LaCeFeMnO-gly/GNS cathode (ca. 5796 mAh g) in a Li-O battery at a current density of 100 mA g. Our results revealed that the composite's high electrochemical activity comes from the synergism of highly abundant oxygen vacancies and redox-active sites due to the Ce and Fe dopant in LaMnO and the excellent charge transfer characteristics of the graphene materials. The as-developed cathode catalyst performed appreciable cycle stability up to 55 cycles at a limited capacity of 1000 mAh g based on conventional glass fiber separators.
在开发用于改善氧电极反应动力学的优质电催化剂时,新颖的设计和合成方法是最重要的考虑因素,例如锂氧电池应用中的氧还原反应(ORR)和析氧反应(OER)。在此,我们展示了一种甘氨酸辅助水热和探针超声处理方法,用于合成介孔球形LaCeFeMnO钙钛矿颗粒和嵌入的石墨烯纳米片(LCFM(8255)-gly/GNS)复合材料,并评估其在锂氧电池应用中的双功能ORR/OER动力学。物理化学表征证实,所形成的LCFM(8255)-gly钙钛矿催化剂具有高度结晶的结构和介孔形态,比表面积大。LCFM(8255)-gly/GNS复合杂化结构在水性和非水性电解质中对ORR/OER均表现出改善的起始电位和高电流密度。在100 mA g的电流密度下,LCFM(8255)-gly/GNS复合阴极(约8475 mAh g)在锂氧电池中的放电容量高于LaCeFeMnO-gly/GNS阴极(约5796 mAh g)。我们的结果表明,该复合材料的高电化学活性源于LaMnO中Ce和Fe掺杂剂导致的大量氧空位和氧化还原活性位点的协同作用以及石墨烯材料优异的电荷转移特性。基于传统玻璃纤维隔膜,所开发的阴极催化剂在1000 mAh g的有限容量下可进行高达55次循环的可观循环稳定性。