文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

物联网医疗环境中的恶意流量检测框架。

A Framework for Malicious Traffic Detection in IoT Healthcare Environment.

机构信息

Al-Khwarizmi Institute of Computer Science (KICS), University of Engineering & Technology (UET), Lahore 54890, Pakistan.

Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal.

出版信息

Sensors (Basel). 2021 Apr 26;21(9):3025. doi: 10.3390/s21093025.


DOI:10.3390/s21093025
PMID:33925813
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8123414/
Abstract

The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices' security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.

摘要

物联网(IoT)作为一个备受关注的话题,在研究和工业界引起了广泛的关注,因为它对人类生活产生了革命性的影响。IoT 技术的快速发展通过引入智能设备、智能医疗、智能工业、智能城市、智能电网等概念,彻底改变了人类的生活。如今,物联网设备的安全性已成为一个严重的问题,特别是在医疗保健领域,最近的攻击暴露了物联网安全漏洞的破坏性。传统的网络安全解决方案已经成熟。然而,由于 IoT 设备的资源约束特性和 IoT 协议的独特行为,现有的安全机制不能直接部署用于保护 IoT 设备和网络免受网络攻击。为了提高物联网的安全性,研究人员需要物联网特定的工具、方法和数据集。为了解决上述问题,我们提供了一个开发物联网上下文感知安全解决方案的框架,以检测物联网用例中的恶意流量。所提出的框架由一个新创建的、开源的物联网数据生成工具 IoT-Flock 组成。IoT-Flock 工具允许研究人员开发由正常和恶意 IoT 设备组成的物联网用例并生成流量。此外,所提出的框架提供了一个开源实用程序,用于将 IoT-Flock 生成的捕获流量转换为物联网数据集。在这项研究中,我们首先生成了一个包含正常和物联网攻击流量的物联网医疗保健数据集。然后,我们将不同的机器学习技术应用于生成的数据集,以检测网络攻击并保护医疗保健系统免受网络攻击。所提出的框架将有助于开发上下文感知的物联网安全解决方案,特别是对于物联网医疗保健环境等敏感用例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/ffe1a395e46b/sensors-21-03025-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/98ec54a921cb/sensors-21-03025-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/d4e5144521bf/sensors-21-03025-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/a941d4e0aa96/sensors-21-03025-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/553078942c27/sensors-21-03025-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/66621c7ec5d2/sensors-21-03025-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/033dec3f2447/sensors-21-03025-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/ffe1a395e46b/sensors-21-03025-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/98ec54a921cb/sensors-21-03025-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/d4e5144521bf/sensors-21-03025-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/a941d4e0aa96/sensors-21-03025-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/553078942c27/sensors-21-03025-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/66621c7ec5d2/sensors-21-03025-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/033dec3f2447/sensors-21-03025-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/8123414/ffe1a395e46b/sensors-21-03025-g007.jpg

相似文献

[1]
A Framework for Malicious Traffic Detection in IoT Healthcare Environment.

Sensors (Basel). 2021-4-26

[2]
A Comparative Analysis on Blockchain versus Centralized Authentication Architectures for IoT-Enabled Smart Devices in Smart Cities: A Comprehensive Review, Recent Advances, and Future Research Directions.

Sensors (Basel). 2022-7-10

[3]
Identifying and Mitigating Phishing Attack Threats in IoT Use Cases Using a Threat Modelling Approach.

Sensors (Basel). 2021-7-14

[4]
Software-Defined-Networking-Based One-versus-Rest Strategy for Detecting and Mitigating Distributed Denial-of-Service Attacks in Smart Home Internet of Things Devices.

Sensors (Basel). 2024-8-3

[5]
Customised Intrusion Detection for an Industrial IoT Heterogeneous Network Based on Machine Learning Algorithms Called FTL-CID.

Sensors (Basel). 2022-12-28

[6]
Cyber-Internet Security Framework to Conquer Energy-Related Attacks on the Internet of Things with Machine Learning Techniques.

Comput Intell Neurosci. 2022

[7]
DDoS Attack Prevention for Internet of Thing Devices Using Ethereum Blockchain Technology.

Sensors (Basel). 2022-9-8

[8]
Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things.

Sensors (Basel). 2019-4-27

[9]
Internet of Things: Security and Solutions Survey.

Sensors (Basel). 2022-9-30

[10]
Trustworthy Intrusion Detection in E-Healthcare Systems.

Front Public Health. 2021

引用本文的文献

[1]
A battery-free wireless sensor for encrypted signal transmission via Maxwell's displacement current.

Microsyst Nanoeng. 2025-6-30

[2]
An intelligent attention based deep convoluted learning (IADCL) model for smart healthcare security.

Sci Rep. 2025-1-8

[3]
The intelligent evaluation in ice and snow tourism based on LSTM network.

Sci Rep. 2024-7-28

[4]
Restoring private autism dataset from sanitized database using an optimized key produced from enhanced combined PSO-GWO framework.

Sci Rep. 2024-7-9

[5]
Security Analysis for Smart Healthcare Systems.

Sensors (Basel). 2024-5-24

[6]
Research on Anomaly Network Detection Based on Self-Attention Mechanism.

Sensors (Basel). 2023-5-25

[7]
Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues.

Cluster Comput. 2022-8-17

[8]
FIDChain: Federated Intrusion Detection System for Blockchain-Enabled IoT Healthcare Applications.

Healthcare (Basel). 2022-6-15

[9]
Intrusion Detection in Internet of Things Systems: A Review on Design Approaches Leveraging Multi-Access Edge Computing, Machine Learning, and Datasets.

Sensors (Basel). 2022-5-14

[10]
Preventing MQTT Vulnerabilities Using IoT-Enabled Intrusion Detection System.

Sensors (Basel). 2022-1-12

本文引用的文献

[1]
Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic.

Comput Secur. 2021-6

[2]
MQTTset, a New Dataset for Machine Learning Techniques on MQTT.

Sensors (Basel). 2020-11-18

[3]
Healthcare Data Breaches: Insights and Implications.

Healthcare (Basel). 2020-5-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索