Suppr超能文献

智能医疗保健中基于联邦学习的人工智能方法:概念、分类、挑战与开放问题。

Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues.

作者信息

Rahman Anichur, Hossain Md Sazzad, Muhammad Ghulam, Kundu Dipanjali, Debnath Tanoy, Rahman Muaz, Khan Md Saikat Islam, Tiwari Prayag, Band Shahab S

机构信息

Present Address: Department of Computer Science and Engineering, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka Bangladesh.

Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.

出版信息

Cluster Comput. 2022 Aug 17:1-41. doi: 10.1007/s10586-022-03658-4.

Abstract

Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare field. Traditionally, the healthcare system works based on centralized agents sharing their raw data. Therefore, huge vulnerabilities and challenges are still existing in this system. However, integrating with AI, the system would be multiple agent collaborators who are capable of communicating with their desired host efficiently. Again, FL is another interesting feature, which works decentralized manner; it maintains the communication based on a model in the preferred system without transferring the raw data. The combination of FL, AI, and XAI techniques can be capable of minimizing several limitations and challenges in the healthcare system. This paper presents a complete analysis of FL using AI for smart healthcare applications. Initially, we discuss contemporary concepts of emerging technologies such as FL, AI, XAI, and the healthcare system. We integrate and classify the FL-AI with healthcare technologies in different domains. Further, we address the existing problems, including security, privacy, stability, and reliability in the healthcare field. In addition, we guide the readers to solving strategies of healthcare using FL and AI. Finally, we address extensive research areas as well as future potential prospects regarding FL-based AI research in the healthcare management system.

摘要

联邦学习(FL)、人工智能(AI)和可解释人工智能(XAI)是智能医疗领域最具趋势性和最令人兴奋的技术。传统上,医疗系统基于集中式代理共享其原始数据来运行。因此,该系统中仍然存在巨大的漏洞和挑战。然而,与人工智能集成后,该系统将成为多个能够与所需主机高效通信的代理协作方。同样,联邦学习是另一个有趣的特性,它以分散的方式工作;它在首选系统中基于模型维护通信,而不传输原始数据。联邦学习、人工智能和可解释人工智能技术的结合能够最大限度地减少医疗系统中的一些限制和挑战。本文对用于智能医疗应用的基于人工智能的联邦学习进行了全面分析。首先,我们讨论了诸如联邦学习、人工智能、可解释人工智能等新兴技术以及医疗系统的当代概念。我们将联邦学习-人工智能与不同领域的医疗技术进行整合和分类。此外,我们阐述了医疗领域中存在的问题,包括安全性、隐私性、稳定性和可靠性。另外,我们为读者介绍了使用联邦学习和人工智能解决医疗问题的策略。最后,我们阐述了医疗管理系统中基于联邦学习的人工智能研究的广泛研究领域以及未来的潜在前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe10/9385101/2cc50ebfdb24/10586_2022_3658_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验