State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Anal Chim Acta. 2021 Jun 1;1162:338503. doi: 10.1016/j.aca.2021.338503. Epub 2021 Apr 12.
Nanoparticle plasmon scattering can provide real-time imaging information on the formation process of noble metal-based nanomaterials. Due to the synergistic effect of the interface between metal and oxide supporting pores, metal nanoparticles (NPs), especially Au NPs, generally exhibit higher catalytic activity on oxide carriers than single-component NPs. Here, we use the dark field scattering microscope to in situ monitor the growth of Au on CuO surface by oxidation-reduction reactions and the nanostructures could be precisely controlled via the scattering signal. The prepared CuO/Au nanocomposite has a higher electrocatalytic activity toward Glucose. When being used as a potential biosensor for nonenzyme glucose detection, excellent performance, such as high sensitivity with a detection limit of 4 μM, high selectivity and outstanding stability, was obtained. The scattering imaging strategy is a convenient and universal approach in controllable synthesis of plasmonic heterostructures, and leads to the improvement of electrocatalysts in biosensing.
纳米颗粒等离子体散射可以提供关于贵金属基纳米材料形成过程的实时成像信息。由于金属和氧化物支撑孔之间的界面协同作用,金属纳米颗粒(NPs),特别是 Au NPs,通常在氧化物载体上表现出比单一组分 NPs 更高的催化活性。在这里,我们使用暗场散射显微镜原位监测氧化还原反应过程中 Au 在 CuO 表面的生长,并且可以通过散射信号精确控制纳米结构。所制备的 CuO/Au 纳米复合材料对葡萄糖表现出更高的电催化活性。当用作非酶葡萄糖检测的潜在生物传感器时,该复合材料获得了出色的性能,例如具有 4 μM 的低检测限、高选择性和出色的稳定性。散射成像策略是一种在等离子体异质结构可控合成中方便且通用的方法,并导致生物传感中电催化剂性能的提高。