Suppr超能文献

机器学习预测病理性肠气肿。

Machine learning for the prediction of pathologic pneumatosis intestinalis.

机构信息

Department of Computer Science, University of Pittsburgh, PA.

Department of Surgery, University of Pittsburgh Medical Center, PA.

出版信息

Surgery. 2021 Sep;170(3):797-805. doi: 10.1016/j.surg.2021.03.049. Epub 2021 Apr 27.

Abstract

BACKGROUND

The radiographic finding of pneumatosis intestinalis can indicate a spectrum of underlying processes ranging from a benign finding to a life-threatening condition. Although radiographic pneumatosis intestinalis is relatively common, there is no validated clinical tool to guide surgical management.

METHODS

Using a retrospective cohort of 300 pneumatosis intestinalis cases from a single institution, we developed 3 machine learning models for 2 clinical tasks: (1) the distinction of benign from pathologic pneumatosis intestinalis cases and (2) the determination of patients who would benefit from an operation. The 3 models are (1) an imaging model based on radiomic features extracted from computed tomography scans, (2) a clinical model based on clinical variables, and (3) a combination model using both the imaging and clinical variables.

RESULTS

The combination model achieves an area under the curve of 0.91 (confidence interval: 0.87-0.94) for task I and an area under the curve of 0.84 (confidence interval: 0.79-0.88) for task II. The combination model significantly (P < .05) outperforms the imaging model and the clinical model for both tasks. The imaging model achieves an area under the curve of 0.72 (confidence interval: 0.57-0.87) for task I and 0.68 (confidence interval: 0.61-0.74) for task II. The clinical model achieves an area under the curve of 0.87 (confidence interval: 0.83-0.91) for task I and 0.76 (confidence interval: 0.70-0.81) for task II.

CONCLUSION

This study suggests that combined radiographic and clinical features can identify pathologic pneumatosis intestinalis and aid in patient selection for surgery. This tool may better inform the surgical decision-making process for patients with pneumatosis intestinalis.

摘要

背景

影像学上的肠气肿表现可以提示一系列潜在的过程,范围从良性发现到危及生命的情况。尽管影像学上的肠气肿相对常见,但目前还没有经过验证的临床工具来指导手术管理。

方法

我们使用来自单个机构的 300 例肠气肿病例的回顾性队列,为 2 项临床任务开发了 3 种机器学习模型:(1)良性与病理性肠气肿病例的区分,(2)确定哪些患者将从手术中受益。这 3 种模型是(1)基于从计算机断层扫描中提取的放射组学特征的成像模型,(2)基于临床变量的临床模型,(3)使用成像和临床变量的组合模型。

结果

组合模型在任务 1 中达到了 0.91 的曲线下面积(置信区间:0.87-0.94),在任务 2 中达到了 0.84 的曲线下面积(置信区间:0.79-0.88)。组合模型在两个任务中均显著(P<0.05)优于成像模型和临床模型。成像模型在任务 1 中达到了 0.72 的曲线下面积(置信区间:0.57-0.87),在任务 2 中达到了 0.68 的曲线下面积(置信区间:0.61-0.74)。临床模型在任务 1 中达到了 0.87 的曲线下面积(置信区间:0.83-0.91),在任务 2 中达到了 0.76 的曲线下面积(置信区间:0.70-0.81)。

结论

本研究表明,联合放射学和临床特征可以识别病理性肠气肿,并有助于为手术选择患者。该工具可以更好地为肠气肿患者的手术决策过程提供信息。

相似文献

1
Machine learning for the prediction of pathologic pneumatosis intestinalis.
Surgery. 2021 Sep;170(3):797-805. doi: 10.1016/j.surg.2021.03.049. Epub 2021 Apr 27.
2
Natural history, clinical pattern, and surgical considerations of pneumatosis intestinalis.
Eur J Med Res. 2009 Jun 18;14(6):231-9. doi: 10.1186/2047-783x-14-6-231.
3
Pneumatosis cystoides intestinalis in Crohn's disease. Report of two cases.
Dis Colon Rectum. 1985 Dec;28(12):951-6. doi: 10.1007/BF02554315.
4
Development and validation of a five-factor score for prediction of pathologic pneumatosis.
J Trauma Acute Care Surg. 2021 Mar 1;90(3):477-483. doi: 10.1097/TA.0000000000002989.
5
Management and outcome of pneumatosis intestinalis.
Am J Surg. 2008 May;195(5):679-82; discussion 682-3. doi: 10.1016/j.amjsurg.2008.01.011.
6
Clinical and CT features of benign pneumatosis intestinalis in pediatric hematopoietic stem cell transplant and oncology patients.
Pediatr Radiol. 2008 Oct;38(10):1074-83. doi: 10.1007/s00247-008-0944-4. Epub 2008 Jul 30.
7
Pneumatosis intestinalis in adults with AIDS: clinical significance and imaging findings.
AJR Am J Roentgenol. 1995 Dec;165(6):1387-90. doi: 10.2214/ajr.165.6.7484571.
9
Pneumatosis cystoides intestinalis: case report and review of literature.
Clin J Gastroenterol. 2020 Feb;13(1):31-36. doi: 10.1007/s12328-019-00999-3. Epub 2019 Jun 3.
10
[Chronic benign Pneumatosis intestinalis].
Dtsch Med Wochenschr. 2016 Oct;141(21):1557-1558. doi: 10.1055/s-0042-111447. Epub 2016 Oct 17.

引用本文的文献

1
Diagnostic performance of MRI-based radiomics models using machine learning approaches for the triple classification of parotid tumors.
Heliyon. 2024 Aug 22;10(17):e36601. doi: 10.1016/j.heliyon.2024.e36601. eCollection 2024 Sep 15.
2
The spectrum of pneumatosis intestinalis in the adult. A surgical dilemma.
World J Gastrointest Surg. 2023 Apr 27;15(4):553-565. doi: 10.4240/wjgs.v15.i4.553.

本文引用的文献

1
Development and validation of a five-factor score for prediction of pathologic pneumatosis.
J Trauma Acute Care Surg. 2021 Mar 1;90(3):477-483. doi: 10.1097/TA.0000000000002989.
2
ESR Statement on the Validation of Imaging Biomarkers.
Insights Imaging. 2020 Jun 4;11(1):76. doi: 10.1186/s13244-020-00872-9.
3
Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening.
Clin Cancer Res. 2018 Dec 1;24(23):5902-5909. doi: 10.1158/1078-0432.CCR-18-1115. Epub 2018 Oct 11.
4
Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks.
Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6(1):1-6. doi: 10.1080/21681163.2015.1124249. Epub 2016 Jun 6.
6
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
9
Radiomics: a new application from established techniques.
Expert Rev Precis Med Drug Dev. 2016;1(2):207-226. doi: 10.1080/23808993.2016.1164013. Epub 2016 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验