Suppr超能文献

通过深度卷积神经网络对间质性肺疾病的CT衰减模式进行整体分类

Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks.

作者信息

Gao Mingchen, Bagci Ulas, Lu Le, Wu Aaron, Buty Mario, Shin Hoo-Chang, Roth Holger, Papadakis Georgios Z, Depeursinge Adrien, Summers Ronald M, Xu Ziyue, Mollura Daniel J

机构信息

Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.

Center for Research in Computer Vision, University of Central Florida (UCF), Orlando, FL, USA.

出版信息

Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6(1):1-6. doi: 10.1080/21681163.2015.1124249. Epub 2016 Jun 6.

Abstract

Interstitial lung diseases (ILD) involve several abnormal imaging patterns observed in computed tomography (CT) images. Accurate classification of these patterns plays a significant role in precise clinical decision making of the extent and nature of the diseases. Therefore, it is important for developing automated pulmonary computer-aided detection systems. Conventionally, this task relies on experts' manual identification of regions of interest (ROIs) as a prerequisite to diagnose potential diseases. This protocol is time consuming and inhibits fully automatic assessment. In this paper, we present a new method to classify ILD imaging patterns on CT images. The main difference is that the proposed algorithm uses the entire image as a holistic input. By circumventing the prerequisite of manual input ROIs, our problem set-up is significantly more difficult than previous work but can better address the clinical workflow. Qualitative and quantitative results using a publicly available ILD database demonstrate state-of-the-art classification accuracy under the patch-based classification and shows the potential of predicting the ILD type using holistic image.

摘要

间质性肺疾病(ILD)涉及在计算机断层扫描(CT)图像中观察到的几种异常成像模式。准确分类这些模式在对疾病的范围和性质进行精确的临床决策中起着重要作用。因此,这对于开发自动化肺部计算机辅助检测系统很重要。传统上,这项任务依赖于专家手动识别感兴趣区域(ROI)作为诊断潜在疾病的先决条件。该方案耗时且阻碍了全自动评估。在本文中,我们提出了一种对CT图像上的ILD成像模式进行分类的新方法。主要区别在于,所提出的算法将整个图像作为整体输入。通过规避手动输入ROI的先决条件,我们的问题设置比以前的工作要困难得多,但可以更好地解决临床工作流程。使用公开可用的ILD数据库进行的定性和定量结果表明,在基于补丁的分类下具有最先进的分类准确性,并显示了使用整体图像预测ILD类型的潜力。

相似文献

引用本文的文献

本文引用的文献

1
Large Margin Local Estimate With Applications to Medical Image Classification.大间隔局部估计及其在医学图像分类中的应用。
IEEE Trans Med Imaging. 2015 Jun;34(6):1362-77. doi: 10.1109/TMI.2015.2393954. Epub 2015 Jan 19.
5
Feature-based image patch approximation for lung tissue classification.基于特征的图像补丁逼近用于肺组织分类。
IEEE Trans Med Imaging. 2013 Apr;32(4):797-808. doi: 10.1109/TMI.2013.2241448. Epub 2013 Jan 18.
8
Building a reference multimedia database for interstitial lung diseases.建立一个用于间质性肺疾病的参考多媒体数据库。
Comput Med Imaging Graph. 2012 Apr;36(3):227-38. doi: 10.1016/j.compmedimag.2011.07.003. Epub 2011 Jul 30.
9
Computer-assisted detection of infectious lung diseases: a review.计算机辅助检测传染性肺病:综述。
Comput Med Imaging Graph. 2012 Jan;36(1):72-84. doi: 10.1016/j.compmedimag.2011.06.002. Epub 2011 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验