Suppr超能文献

用于IM/DD 112 Gbps PAM4数据中心间光互连的计算高效稀疏DNN非线性均衡

Computation efficient sparse DNN nonlinear equalization for IM/DD 112  Gbps PAM4 inter-data center optical interconnects.

作者信息

Yadav Govind Sharan, Chuang Chun-Yen, Feng Kai-Ming, Chen Jyehong, Chen Young-Kai

出版信息

Opt Lett. 2021 May 1;46(9):1999-2002. doi: 10.1364/OL.417834.

Abstract

In this Letter, we propose and experimentally demonstrate a novel, to the best of our knowledge, sparse deep neural network-based nonlinear equalizer (SDNN-NLE). By identifying only the significant weight coefficients, our approach remarkably reduces the computational complexity, while still upholding the desired transmission accuracy. The insignificant weights are pruned in two phases: identifying the significance of each weight by pre-training the fully connected DNN-NLE with an adaptive L2-regularization and then pruning those insignificant ones away with a pre-defined sparsity. An experimental demonstration is conducted on a 112 Gbps PAM4 link over 40 km standard single-mode fiber with a 25 GHz externally modulated laser in O-band. Our experimental results illustrate that, for the 112 Gbps PAM4 signal at a received optical power of -5 over 40 km, the proposed SDNN-NLE exhibits promising solutions to effectively mitigate nonlinear distortions and outperforms a conventional fully connected Volterra equalizer (VE), conventional fully connected DNN-NLE, and sparse VE by providing 71%, 63%, and 41% complexity reduction, respectively, without degrading the system performance.

摘要

在本信函中,据我们所知,我们提出并通过实验证明了一种基于稀疏深度神经网络的新型非线性均衡器(SDNN-NLE)。通过仅识别重要的权重系数,我们的方法显著降低了计算复杂度,同时仍保持所需的传输精度。不重要的权重分两个阶段进行修剪:通过使用自适应L2正则化对全连接DNN-NLE进行预训练来识别每个权重的重要性,然后用预定义的稀疏度将那些不重要的权重修剪掉。在一个通过40公里标准单模光纤、使用O波段25GHz外部调制激光器的112Gbps PAM4链路进行了实验演示。我们的实验结果表明,对于在40公里上接收光功率为-5的112Gbps PAM4信号,所提出的SDNN-NLE展示了有效减轻非线性失真的有前景的解决方案,并且分别比传统全连接沃尔泰拉均衡器(VE)、传统全连接DNN-NLE和稀疏VE在不降低系统性能的情况下提供了71%、63%和41%的复杂度降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验