Laatikainen Jyrki, Friberg Ari T, Korotkova Olga, Setälä Tero
Opt Lett. 2021 May 1;46(9):2143-2146. doi: 10.1364/OL.422917.
We introduce a Poincaré sphere construction for geometrical representation of the state of two-point spatial coherence in random electromagnetic (vectorial) beams. To this end, a novel descriptor of coherence is invoked, which shares some important mathematical properties with the polarization matrix and spans a new type of Stokes parameter space. The coherence Poincaré sphere emerges as a geometric interpretation of this novel formalism, which is developed for uniformly and nonuniformly fully polarized beams. The construction is extended to partially polarized beams as well and is demonstrated with a field having separable spatial coherence and polarization characteristics. At a single point, the coherence Poincaré sphere reduces to the conventional polarization Poincaré sphere for any state of partial polarization.
我们引入一种庞加莱球构造,用于对随机电磁(矢量)光束中两点空间相干态进行几何表示。为此,引入了一种新颖的相干描述符,它与极化矩阵具有一些重要的数学性质,并跨越一种新型的斯托克斯参量空间。相干庞加莱球作为这种新颖形式体系的几何解释而出现,该形式体系是针对均匀和非均匀完全极化光束发展而来的。这种构造也扩展到了部分极化光束,并通过具有可分离空间相干和极化特性的场进行了演示。在单个点处,对于任何部分极化状态,相干庞加莱球都简化为传统的极化庞加莱球。