Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, F-31062 Toulouse, France.
Dalton Trans. 2021 Jun 15;50(23):7955-7968. doi: 10.1039/d1dt01079d.
Nine-coordinate [ErN9] or [ErN3O6] chromophores found in triple helical [Er(L)3]3+ complexes (L corresponds to 2,2',6',2''-terpyridine (tpy), 2,6-(bisbenzimidazol-2-yl)pyridine (bzimpy), 2,6-diethylcarboxypyridine (dpa-ester) or 2,6-diethylcarboxamidopyridine (dpa-diamide) derivatives), [Er(dpa)3]3- (dpa is the 2,6-dipicolinate dianion) and [GaErGa(bpb-bzimpy)3]9+ (bpb-bzimpy is 2,6-bis((pyridin-2-benzimidazol-5-yl)methyl-(benzimidazol-2-yl))pyridine) exhibit NIR (excitation at 801 nm) into visible (emission at 542 nm) linear light upconversion processes in acetonitrile at room temperature. The associated quantum yields 5.5(6) × 10-11 ≤ φuptot(ESA) ≤ 1.7(2) × 10-9 appear to be 1-3 orders of magnitude larger than those predicted by the accepted single-center excited-state absorption mechanism (ESA). Switching to the alternative energy transfer upconversion mechanism (ETU), which operates in multi-centers [CrErCr(bpb-bzimpy)3]9+, leads to an improved quantum yield of φuptot(ETU) = 5.8(6) × 10-8, but also to an even larger discrepancy by 4-6 orders of magnitude when compared with theoretical models. All photophysical studies point to Er(4I13/2) as being the only available 'long-lived' (1.8 ≤ τ ≤ 6.3 μs) and emissive excited state, which works as an intermediate relay for absorbing the second photon, but with an unexpected large cross-section for an intrashell 4f → 4f electronic transition. With this in mind, the ETU mechanism, thought to optimize upconversion via intermetallic Cr → Er communication in [CrErCr(bpb-bzimpy)3]9+, is indeed not crucial and the boosted associated upconversion quantum yield is indebted to the dominant contribution of the single-center erbium ESA process. This curious phenomenon is responsible for the successful implementation of light upconversion in molecular coordination complexes under reasonable light power intensities, which paves the way for applications in medicine and biology. Its origin could be linked with the presence of metal-ligand bonding.
在三重螺旋[Er(L)3]3+配合物中发现了九配位[ErN9]或[ErN3O6]发色团(L 对应于 2,2',6',2''-三联吡啶(tpy)、2,6-(双苯并咪唑-2-基)吡啶(bzimpy)、2,6-二乙基羧酸吡啶(dpa-ester)或 2,6-二乙基羧酸酰胺吡啶(dpa-diamide)衍生物)、[Er(dpa)3]3-(dpa 是 2,6-二吡啶羧酸二阴离子)和[GaErGa(bpb-bzimpy)3]9+(bpb-bzimpy 是 2,6-双((吡啶-2-苯并咪唑-5-基)甲基(苯并咪唑-2-基))吡啶)在室温下的乙腈中表现出近红外(801nm 激发)到可见(542nm 发射)的线性上转换过程。相关的量子产率 5.5(6)×10-11≤φuptot(ESA)≤1.7(2)×10-9似乎比公认的单中心激发态吸收机制(ESA)预测的值大 1-3 个数量级。切换到替代的能量转移上转换机制(ETU),该机制在多中心[CrErCr(bpb-bzimpy)3]9+中运行,导致上转换的量子产率φuptot(ETU)=5.8(6)×10-8 得到改善,但与理论模型相比,仍相差 4-6 个数量级。所有光物理研究都表明 Er(4I13/2)是唯一可用的“长寿命”(1.8≤τ≤6.3μs)和发射激发态,它作为吸收第二个光子的中间继电器,但对于壳层内 4f→4f 电子跃迁具有出乎意料大的截面。考虑到这一点,ETU 机制被认为通过[CrErCr(bpb-bzimpy)3]9+中的金属间 Cr→Er 通信来优化上转换,但实际上并非关键,并且相关的上转换量子产率的提高归因于单中心铒 ESA 过程的主导贡献。这种奇怪的现象是在合理的光功率强度下实现分子配位配合物中的上转换的原因,为在医学和生物学中的应用铺平了道路。它的起源可能与金属-配体键的存在有关。