Qin Xian, Carneiro Neto Albano N, Longo Ricardo L, Wu Yiming, Malta Oscar L, Liu Xiaogang
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal.
J Phys Chem Lett. 2021 Feb 11;12(5):1520-1541. doi: 10.1021/acs.jpclett.0c03613. Epub 2021 Feb 3.
Lanthanide-doped nanoparticles have great potential for energy conversion applications, as their optical properties can be precisely controlled by varying the doping composition, concentration, and surface structures, as well as through plasmonic coupling. In this Perspective we highlight recent advances in upconversion emission modulation enabled by coupling upconversion nanoparticles with well-defined plasmonic nanostructures. We emphasize fundamental understanding of luminescence enhancement, monochromatic emission amplification, lifetime tuning, and polarization control at nanoscale. The interplay between localized surface plasmons and absorbed photons at the plasmonic metal-lanthanide interface substantially enriches the interpretation of plasmon-coupled nonlinear photophysical processes. These studies will enable novel functional nanomaterials or nanostructures to be designed for a multitude of technological applications, including biomedicine, lasing, optogenetics, super-resolution imaging, photovoltaics, and photocatalysis.
镧系元素掺杂的纳米粒子在能量转换应用方面具有巨大潜力,因为通过改变掺杂组成、浓度、表面结构以及通过等离子体耦合,可以精确控制其光学性质。在这篇展望文章中,我们重点介绍了通过将上转换纳米粒子与定义明确的等离子体纳米结构耦合实现的上转换发射调制的最新进展。我们强调对纳米尺度上的发光增强、单色发射放大、寿命调谐和偏振控制的基本理解。等离子体金属 - 镧系元素界面处的局域表面等离子体与吸收光子之间的相互作用极大地丰富了对等离子体耦合非线性光物理过程的解释。这些研究将使人们能够设计出用于多种技术应用的新型功能纳米材料或纳米结构,包括生物医学、激光、光遗传学、超分辨率成像、光伏和光催化。