Departamento de Biologia, Universidade de São Paulo, Av. Bandeirantes 1900, Ribeirão Preto-SP 14040-091, Brazil.
Department of Earth Sciences, University of Oxford, South Parks Road, OX13AN Oxford, UK; Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein, Private Bag 3, Johannesburg WITS2050, South Africa.
Curr Biol. 2021 Jun 21;31(12):2520-2529.e6. doi: 10.1016/j.cub.2021.03.086. Epub 2021 Apr 29.
Living archosaurs (birds and crocodylians) have disparate locomotor strategies that evolved since their divergence ∼250 mya. Little is known about the early evolution of the sensory structures that are coupled with these changes, mostly due to limited sampling of early fossils on key stem lineages. In particular, the morphology of the semicircular canals (SCCs) of the endosseous labyrinth has a long-hypothesized relationship with locomotion. Here, we analyze SCC shapes and sizes of living and extinct archosaurs encompassing diverse locomotor habits, including bipedal, semi-aquatic, and flying taxa. We test form-function hypotheses of the SCCs and chronicle their evolution during deep archosaurian divergences. We find that SCC shape is statistically associated with both flight and bipedalism. However, this shape variation is small and is more likely explained by changes in braincase geometry than by locomotor changes. We demonstrate high disparity of both shape and size among stem-archosaurs and a deep divergence of SCC morphologies at the bird-crocodylian split. Stem-crocodylians exhibit diverse morphologies, including aspects also present in birds and distinct from other reptiles. Therefore, extant crocodylian SCC morphologies do not reflect retention of a "primitive" reptilian condition. Key aspects of bird SCC morphology that hitherto were interpreted as flight related, including large SCC size and enhanced sensitivity, appeared early on the bird stem-lineage in non-flying dinosaur precursors. Taken together, our results indicate a deep divergence of SCC traits at the bird-crocodylian split and that living archosaurs evolved from an early radiation with high sensory diversity. VIDEO ABSTRACT.
现生的恐龙(鸟类和鳄类)拥有不同的运动策略,这些策略是在它们 2.5 亿年前分歧后进化而来的。关于这些变化所伴随的感觉结构的早期进化知之甚少,这主要是由于早期关键主干谱系的化石样本有限。特别是,迷路内的半规管(SCC)的形态与运动有长期假设的关系。在这里,我们分析了包括双足、半水生和飞行类群在内的各种运动习性的现生和已灭绝的恐龙的 SCC 形状和大小。我们检验了 SCC 的形态与功能假说,并记录了它们在深恐龙分化过程中的进化。我们发现 SCC 的形状与飞行和两足动物都有统计学上的关联。然而,这种形状变化很小,更可能是由于脑壳几何形状的变化而不是运动变化引起的。我们表明,在主干恐龙中,SCC 的形状和大小具有很高的差异,并且在鸟类与鳄类的分裂处 SCC 形态也有很大的分歧。主干鳄类表现出多种多样的形态,包括在鸟类中也存在的方面,以及与其他爬行动物不同的方面。因此,现生鳄类的 SCC 形态并不反映对“原始”爬行动物状态的保留。迄今被解释为与飞行相关的鸟类 SCC 形态的关键方面,包括 SCC 尺寸大和灵敏度增强,在非飞行恐龙祖先的鸟类主干谱系中很早就出现了。总的来说,我们的研究结果表明,在鸟类与鳄类的分歧处 SCC 特征有很大的分歧,现生的恐龙是从具有高感觉多样性的早期辐射中进化而来的。