Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany.
Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany; Medical Faculty, Institute of Neural and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany.
J Biol Chem. 2021 Jan-Jun;296:100626. doi: 10.1016/j.jbc.2021.100626. Epub 2021 Apr 28.
RAS effectors specifically interact with GTP-bound RAS proteins to link extracellular signals to downstream signaling pathways. These interactions rely on two types of domains, called RAS-binding (RB) and RAS association (RA) domains, which share common structural characteristics. Although the molecular nature of RAS-effector interactions is well-studied for some proteins, most of the RA/RB-domain-containing proteins remain largely uncharacterized. Here, we searched through human proteome databases, extracting 41 RA domains in 39 proteins and 16 RB domains in 14 proteins, each of which can specifically select at least one of the 25 members in the RAS family. We next comprehensively investigated the sequence-structure-function relationship between different representatives of the RAS family, including HRAS, RRAS, RALA, RAP1B, RAP2A, RHEB1, and RIT1, with all members of RA domain family proteins (RASSFs) and the RB-domain-containing CRAF. The binding affinity for RAS-effector interactions, determined using fluorescence polarization, broadly ranged between high (0.3 μM) and very low (500 μM) affinities, raising interesting questions about the consequence of these variable binding affinities in the regulation of signaling events. Sequence and structural alignments pointed to two interaction hotspots in the RA/RB domains, consisting of an average of 19 RAS-binding residues. Moreover, we found novel interactions between RRAS1, RIT1, and RALA and RASSF7, RASSF9, and RASSF1, respectively, which were systematically explored in sequence-structure-property relationship analysis, and validated by mutational analysis. These data provide a set of distinct functional properties and putative biological roles that should now be investigated in the cellular context.
RAS 效应物特异性地与 GTP 结合的 RAS 蛋白相互作用,将细胞外信号连接到下游信号通路。这些相互作用依赖于两种类型的结构域,称为 RAS 结合 (RB) 和 RAS 相关 (RA) 结构域,它们具有共同的结构特征。尽管一些蛋白质的 RAS 效应物相互作用的分子性质已经得到很好的研究,但大多数含有 RA/RB 结构域的蛋白质仍然很大程度上未被表征。在这里,我们通过人类蛋白质组数据库进行搜索,从 39 种蛋白质中提取了 41 个 RA 结构域,从 14 种蛋白质中提取了 16 个 RB 结构域,每个结构域都可以特异性选择 RAS 家族的 25 个成员中的至少一个。接下来,我们全面研究了不同 RAS 家族成员(包括 HRAS、RRAS、RALA、RAP1B、RAP2A、RHEB1 和 RIT1)与 RA 结构域家族蛋白(RASSFs)和 RB 结构域包含的 CRAF 之间的序列-结构-功能关系。使用荧光偏振法测定的 RAS 效应物相互作用的结合亲和力范围很广,从高亲和力(0.3 μM)到非常低亲和力(500 μM),这引发了关于这些可变结合亲和力对信号事件调节的后果的有趣问题。序列和结构比对指出了 RA/RB 结构域中的两个相互作用热点,由平均 19 个 RAS 结合残基组成。此外,我们发现 RRAS1、RIT1 和 RALA 分别与 RASSF7、RASSF9 和 RASSF1 之间存在新的相互作用,这些相互作用在序列-结构-性质关系分析中得到了系统研究,并通过突变分析得到了验证。这些数据提供了一组独特的功能特性和潜在的生物学作用,现在应该在细胞环境中进行研究。