Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway.
Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo, Norway.
Aquat Toxicol. 2021 Jun;235:105836. doi: 10.1016/j.aquatox.2021.105836. Epub 2021 Apr 20.
The importance of incorporating kinetic approaches in order to gain information on underlying physiological processes explaining species sensitivity to environmental stressors has been highlighted in recent years. Uranium is present in the aquatic environment worldwide due to naturally occurring and anthropogenic sources, posing a potential risk to freshwater taxa in contaminated areas. Although literature shows that organisms vary widely with respect to susceptibility to U, information on toxicokinetics that may explain the variation in toxicodynamic responses is scarce. In the present work, Daphnia magna were exposed to a range of environmentally relevant U concentrations (0 - 200 µg L) followed by a 48 h depuration phase to obtain information on toxicokinetic parameters and toxic responses. Results showed time-dependent and concentration-dependent uptake of U in daphnia (k = 1.2 - 3.8 L g day) with bioconcentration factors (BCFs) ranging from 1,641 - 5,204 (L kg), a high depuration rate constant (k = 0.75 day), the majority of U tightly bound to the exoskeleton (~ 50 - 60%) and maternal transfer of U (1 - 7%). Effects on growth, survivorship and major ion homeostasis strongly correlated with exposure (external or internal) and toxicokinetic parameters (uptake rates, k, BCF), indicating that uptake and internalization drives U toxicity responses in D. magna. Interference from U with ion uptake pathways and homeostasis was highlighted by the alteration in whole-body ion concentrations, their ionic ratios (e.g., Ca:Mg and Na:K) and the increased expression in some ion regulating genes. Together, this work adds to the limited data examining U kinetics in freshwater taxa and, in addition, provides perspective on factors influencing stress, toxicity and adaptive response to environmental contaminants such as uranium.
近年来,人们强调了将动力学方法纳入其中以获取有关解释物种对环境胁迫敏感性的潜在生理过程的信息的重要性。由于天然和人为来源,铀在全球水生环境中都有存在,这对受污染地区的淡水分类群构成了潜在风险。尽管文献表明,生物体对 U 的敏感性差异很大,但有关可能解释毒动力反应变化的毒物动力学信息却很少。在本工作中,采用一系列环境相关 U 浓度(0-200 µg L)对大型溞进行暴露,随后进行 48 h 的净化阶段,以获取毒物动力学参数和毒性反应信息。结果表明,U 在大型溞中有时间和浓度依赖性的摄取(k=1.2-3.8 L g day),生物浓缩系数(BCF)范围为 1641-5204(L kg),净化率常数(k)高(0.75 天),大部分 U 与外骨骼紧密结合(~50-60%)和母体 U 转移(1-7%)。生长、存活率和主要离子动态平衡的影响与暴露(外部或内部)和毒物动力学参数(摄取率、k、BCF)强烈相关,这表明摄取和内化是 U 对大型溞毒性反应的驱动力。U 对离子摄取途径和动态平衡的干扰作用,表现为全身离子浓度、其离子比(例如 Ca:Mg 和 Na:K)的改变以及一些离子调节基因表达的增加。总之,这项工作增加了对淡水分类群中 U 动力学的有限数据的了解,此外,还为研究影响应激、毒性和对环境污染物(如铀)的适应性反应的因素提供了新的视角。