Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea.
School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea.
Acta Biomater. 2021 Jul 1;128:393-407. doi: 10.1016/j.actbio.2021.04.043. Epub 2021 Apr 29.
Membrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membrane-inserted proteins in aqueous solution, thereby enabling their downstream characterizations. Membrane proteins encapsulated in detergent micelles tend to denature and aggregate over time, highlighting the need for development of new amphiphiles effective for protein solubility and stability. In this work, we present newly-designed maltoside detergents containing a pendant chain attached to a glycerol-decorated tris(hydroxymethyl)methane (THM) core, designated GTMs. One set of the GTMs has a hydrophobic pendant (ethyl chain; E-GTMs), and the other set has a hydrophilic pendant (methoxyethoxylmethyl chain; M-GTMs) placed in the hydrophobic-hydrophilic interfaces. The two sets of GTMs displayed profoundly different behaviors in terms of detergent self-assembly and protein stabilization efficacy. These behaviors mainly arise from the polarity difference between two pendants (ethyl and methoxyethoxylmethyl chains) that results in a large variation in detergent conformation between these sets of GTMs in aqueous media. The resulting high hydrophobic density in the detergent micelle interior is likely responsible for enhanced efficacy of the M-GTMs for protein stabilization compared to the E-GTMs and a gold standard detergent DDM. A representative GTM, M-GTM-O12, was more effective for protein stability than some recently developed detergents including LMNG. This is the first case study investigating the effect of pendant polarity on detergent geometry correlated with detergent efficacy for protein stabilization. STATEMENT OF SIGNIFICANCE: This study introduces new amphiphiles for use as biochemical tools in membrane protein studies. We identified a few hydrophilic pendant-bearing amphiphiles such as M-GTM-O11 and M-GTM-O12 that show remarkable efficacy for membrane protein solubilization and stabilization compared to a gold standard DDM, the hydrophobic counterparts (E-GTMs) and a significantly optimized detergent LMNG. In addition, detergent results obtained in the current study reveals the effect of detergent pendant polarity on protein solubility and stability. Thus, the current study represents both significant chemical and conceptual advance. The detergent tools and design principle introduced here advance protein science and facilitate structure-based drug design and development.
膜蛋白结构为基本生化过程提供了原子水平的深入了解,并促进了基于蛋白质结构的药物设计。然而,这些生物大分子在脂质双层外的固有不稳定性阻碍了它们的结构和功能研究。胶束去污剂可用于在水溶液中溶解和稳定这些插入膜的蛋白质,从而实现其下游特性。包裹在去污剂胶束中的膜蛋白随着时间的推移容易变性和聚集,这突出表明需要开发新的两亲物来有效提高蛋白质的溶解度和稳定性。在这项工作中,我们介绍了新设计的含有连接到甘油修饰的三羟甲基甲烷(THM)核的侧链的麦芽糖基去污剂,命名为 GTMs。一组 GTM 具有疏水性侧链(乙基链;E-GTMs),另一组具有亲水性侧链(甲氧基乙氧基甲基链;M-GTMs),位于疏水性-亲水性界面处。这两组 GTMs 在去污剂自组装和蛋白质稳定效果方面表现出截然不同的行为。这些行为主要源于两个侧链(乙基和甲氧基乙氧基甲基链)之间的极性差异,导致这些 GTMs 组在水介质中的去污剂构象发生很大变化。去污剂胶束内部的高疏水性密度可能是导致 M-GTMs 比 E-GTMs 和标准去污剂 DDM 更有效地稳定蛋白质的原因。代表性的 GTM,M-GTM-O12,比一些最近开发的去污剂(包括 LMNG)更有效地稳定蛋白质。这是首例研究侧链极性对与蛋白质稳定相关的去污剂几何形状的影响的案例研究。意义声明:本研究介绍了新的两亲物,可作为膜蛋白研究中的生化工具。我们发现了一些含有亲水性侧链的两亲物,如 M-GTM-O11 和 M-GTM-O12,与标准去污剂 DDM 相比,它们对膜蛋白的溶解和稳定具有显著的效果,而疏水性对应物(E-GTMs)和经过显著优化的去污剂 LMNG 则没有。此外,当前研究中的去污剂结果揭示了去污剂侧链极性对蛋白质溶解度和稳定性的影响。因此,本研究代表了重大的化学和概念上的进步。这里介绍的去污剂工具和设计原则推进了蛋白质科学的发展,并促进了基于结构的药物设计和开发。