Suppr超能文献

阐述3,5-双(2-羟基苯基)-1H-1,2,4-三唑的激发态双质子转移机制及多重荧光特性。

Elaborating the excited-state double proton transfer mechanism and multiple fluorescent characteristics of 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole.

作者信息

Li Chaozheng, Hu Bo, Cao Yonghua, Li Yongfeng

机构信息

School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.

School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Sep 5;258:119854. doi: 10.1016/j.saa.2021.119854. Epub 2021 Apr 20.

Abstract

Recently, Krishnamoorthy and coworkers reported a new type of proton transfer, which was labeled as 'proton transfer triggered proton transfer', in 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole (bis-HPTA). In this work, the excited-state double proton transfer (ESDPT) mechanism and multiple fluorescent characteristics of bis-HPTA were investigated. Upon photo-excitation, the intramolecular hydrogen bonding strength changed and the electron density of bis-HPTA redistributed. These changes will affect the proton transfer process. In S state, the proton transfer processes of bis-HPTA were prohibited on the stepwise and concerted pathways. After vertical excitation to the S state, the ESIPT-II process was more likely to occur than the ESIPT-I process, which was contrary to the conclusion that the ESIPT-II process is blocked and the ESIPT-II process takes place after the ESIPT-I process proposed by Krishnamoorthy and coworkers. When the K2 tautomer was formed through the ESIPT-II process, the second proton transfer process on the stepwise pathway was prohibited. On another stepwise pathway, after the ESIPT-I process (form the K1 tautomer), the second proton transfer process should overcome a higher potential barrier than the ESIPT-I process to form ESDPT tautomer. On the concerted pathway, the bis-HPTA can synchronous transfer double protons to form the ESDPT tautomer. The ESDPT tautomer was unstable and immediately converted to the K2 tautomer via a barrierless reverse proton transfer process. Thus, the fluorescent maximum at 465 nm from the ESDPT tautomer reported by Krishnamoorthy and coworkers was ascribed to the K2 tautomer. Most of the fluorophores show dual fluorescent properties, while the bis-HPTA undergoing ESDPT process exhibited three well-separated fluorescent peaks, corresponding to its normal form (438 nm), K1 tautomer (462 nm) and K2 tautomer (450 nm), respectively.

摘要

最近,克里希纳穆尔蒂及其同事报道了一种新型质子转移,在3,5 - 双(2 - 羟基苯基)-1H - 1,2,4 - 三唑(双 - HPTA)中被标记为“质子转移引发的质子转移”。在这项工作中,研究了双 - HPTA的激发态双质子转移(ESDPT)机制和多重荧光特性。光激发后,分子内氢键强度发生变化,双 - HPTA的电子密度重新分布。这些变化将影响质子转移过程。在S态下,双 - HPTA的质子转移过程在分步和协同途径上均被禁止。垂直激发到S态后,ESIPT - II过程比ESIPT - I过程更易发生,这与克里希纳穆尔蒂及其同事提出的ESIPT - II过程受阻且ESIPT - II过程在ESIPT - I过程之后发生的结论相反。当通过ESIPT - II过程形成K2互变异构体时,分步途径上的第二个质子转移过程被禁止。在另一条分步途径上,ESIPT - I过程(形成K1互变异构体)之后,第二个质子转移过程要形成ESDPT互变异构体需克服比ESIPT - I过程更高的势垒。在协同途径上,双 - HPTA可以同步转移两个质子形成ESDPT互变异构体。ESDPT互变异构体不稳定,通过无势垒的反向质子转移过程立即转化为K2互变异构体。因此,克里希纳穆尔蒂及其同事报道的ESDPT互变异构体在465 nm处的荧光最大值归因于K2互变异构体。大多数荧光团表现出双荧光特性,而经历ESDPT过程的双 - HPTA表现出三个明显分离的荧光峰,分别对应其正常形式(438 nm)、K1互变异构体(462 nm)和K2互变异构体(450 nm)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验