Suppr超能文献

尼泊尔一家三级中心的罗布斯顿剖宫产分类法。

Robsons Ten Group Classification of Cesarean Section at a Tertiary Center in Nepal.

机构信息

Paropakar Maternity and Women's Hospital, Thapathali, Kathmandu, Nepal.

出版信息

J Nepal Health Res Counc. 2021 Apr 23;19(1):91-96. doi: 10.33314/jnhrc.v19i1.2694.

Abstract

BACKGROUND

Increasing trend in Ceasarean birth is the issue of both demand and supply side. One of the recommended tools to characterize every pregnancy admitted for childbirth is Robson ten-group classification system that may evaluate obstetric practice. The aim of the study was to assess the cesarean section pattern based on Robson's classification in a central referral hospital.

METHODS

A retrospective census of childbirths at Paropakar Maternity and Women's Hospital in Kathmandu performed from September 2018 to February 2019 based on obstetric record. Robson ten-group classification system was the research tool to collect data and Robson Classification Report Table was used to evaluate the data.

RESULTS

There were 10500 births with 34% (32-35%) overall cesarean section rate. Excluding spontaneous and induced labor the supposedly total prelabor CS is 14.5%. Group 1+2+3 size is 81% and 21% CS; 5+10 had 11.3% and 23.3% respectively. Prelabor CS (2b+4b) is 3.54% and additional 11% from malpresentation and preterm. Group CS rate from Class 5 onwards, and ratio of 1 and 2 are as recommended by Robson; 67% of CS were not picked up by Robson class due to indications evolved as the labor progresses and the attributes not pre-classified.

CONCLUSIONS

The assessed quality of data and the type of obstetric population by Robson reference values prove this study as a representative research. But the indications of cesarean sections can be predicted for only one-third of pregnancy attributes classified by Robson class. To supplement this tool to reduce rising cesarean birth requires audit of indications at decision making level.

摘要

背景

剖宫产率呈上升趋势,这是供需双方共同面临的问题。罗布斯顿十组分类系统是评估产科实践的推荐工具之一,用于描述每例分娩入院的妊娠情况。本研究旨在评估加德满都帕罗帕克马蒂亚和妇女医院基于罗布斯顿分类的剖宫产模式。

方法

2018 年 9 月至 2019 年 2 月,我们对帕罗帕克马蒂亚和妇女医院的分娩情况进行了回顾性普查,研究数据来源于产科记录。本研究使用罗布斯顿十组分类系统作为研究工具收集数据,并使用罗布斯顿分类报告表对数据进行评估。

结果

共有 10500 例分娩,总体剖宫产率为 34%(32-35%)。不包括自然分娩和引产,预计产前剖宫产率为 14.5%。第 1+2+3 组的大小为 81%和 21%的剖宫产率;第 5+10 组分别为 11.3%和 23.3%。产前剖宫产(2b+4b)为 3.54%,另有 11%因胎位不正和早产。第 5 类及以上组的剖宫产率和 1 类和 2 类的比例与罗布斯顿分类推荐值一致;由于产程进展和未预先分类的特征,67%的剖宫产术未被罗布斯顿分类所涵盖。

结论

本研究通过罗布斯顿参考值评估了数据质量和产科人群类型,证明这是一项具有代表性的研究。但是,罗布斯顿分类的妊娠属性中只有三分之一的剖宫产指征可以预测。要使用这种工具来降低不断上升的剖宫产率,需要对决策层面的指征进行审核。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验