Suppr超能文献

子宫浆液性癌。

Uterine serous carcinoma.

机构信息

Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.

Centre Leon Bérard, Hesper lab. EA 7425 Université Claude Bernard Lyon Est, Lyon, France.

出版信息

Gynecol Oncol. 2021 Jul;162(1):226-234. doi: 10.1016/j.ygyno.2021.04.029. Epub 2021 Apr 30.

Abstract

Serous endometrial cancer represents a relative rare entity accounting for about 10% of all diagnosed endometrial cancer, but it is responsible for 40% of endometrial cancer-related deaths. Patients with serous endometrial cancer are often diagnosed at earlier disease stage, but remain at higher risk of recurrence and poorer prognosis when compared stage-for-stage with endometrioid subtype endometrial cancer. Serous endometrial cancers are characterized by marked nuclear atypia and abnormal p53 staining in immunohistochemistry. The mainstay of treatment for newly diagnosed serous endometrial cancer includes a multi-modal therapy with surgery, chemotherapy and/or radiotherapy. Unfortunately, despite these efforts, survival outcomes still remain poor. Recently, The Cancer Genome Atlas (TCGA) Research Network classified all endometrial cancer types into four categories, of which, serous endometrial cancer mostly is found within the "copy number high" group. This group is characterized by the increased cell cycle deregulation (e.g., CCNE1, MYC, PPP2R1A, PIKCA, ERBB2 and CDKN2A) and TP53 mutations (90%). To date, the combination of pembrolizumab and lenvatinib is an effective treatment modality in second-line therapy, with a response rate of 50% in advanced/recurrent serous endometrial cancer. Owing to the unfavorable outcomes of serous endometrial cancer, clinical trials are a priority. At present, ongoing studies are testing novel combinations of various targeted and immunotherapeutic agents in newly diagnosed and advanced/recurrent endometrial cancer - an important strategy for serous endometrial cancer, whereby tumors are usually p53+ and pMMR, making response to PD-1 inhibitor monotherapy unlikely. Here, the rare tumor working group (including members from the European Society of Gynecologic Oncology (ESGO), Gynecologic Cancer Intergroup (GCIG), and Japanese Gynecologic Oncology Group (JGOG)), performed a narrative review reporting on the current landscape of serous endometrial cancer and focusing on standard and emerging therapeutic options for patients affected by this difficult disease.

摘要

浆液性子宫内膜癌是一种相对罕见的实体瘤,约占所有诊断为子宫内膜癌的 10%,但它占与子宫内膜癌相关的 40%死亡人数。患有浆液性子宫内膜癌的患者通常在疾病早期被诊断出来,但与子宫内膜样亚型子宫内膜癌相比,在相同分期下,复发风险更高,预后更差。浆液性子宫内膜癌的特征是核异型性明显和免疫组化中 p53 染色异常。新诊断的浆液性子宫内膜癌的主要治疗方法是多模式治疗,包括手术、化疗和/或放疗。不幸的是,尽管采取了这些措施,生存结果仍然很差。最近,癌症基因组图谱(TCGA)研究网络将所有子宫内膜癌类型分为四类,其中浆液性子宫内膜癌主要存在于“拷贝数高”组。该组的特征是细胞周期调控失调增加(例如,CCNE1、MYC、PPP2R1A、PIKCA、ERBB2 和 CDKN2A)和 TP53 突变(90%)。迄今为止,pembrolizumab 和 lenvatinib 的联合治疗是二线治疗的有效治疗方法,在晚期/复发性浆液性子宫内膜癌中的应答率为 50%。由于浆液性子宫内膜癌的不良结局,临床试验是当务之急。目前,正在进行的研究正在测试新诊断和晚期/复发性子宫内膜癌中各种靶向和免疫治疗药物的新组合,这是浆液性子宫内膜癌的重要策略,因为肿瘤通常为 p53+和 pMMR,使 PD-1 抑制剂单药治疗的反应不太可能。在这里,罕见肿瘤工作组(包括欧洲妇科肿瘤学会(ESGO)、妇科癌症国际组(GCIG)和日本妇科肿瘤学组(JGOG)的成员)进行了叙述性综述,报告了浆液性子宫内膜癌的现状,并重点介绍了针对这种棘手疾病患者的标准和新兴治疗选择。

相似文献

1
Uterine serous carcinoma.子宫浆液性癌。
Gynecol Oncol. 2021 Jul;162(1):226-234. doi: 10.1016/j.ygyno.2021.04.029. Epub 2021 Apr 30.
2
Uterine serous carcinoma: key advances and novel treatment approaches.子宫浆液性癌:关键进展和新的治疗方法。
Int J Gynecol Cancer. 2021 Aug;31(8):1165-1174. doi: 10.1136/ijgc-2021-002753. Epub 2021 Jul 1.
5
Uterine papillary serous carcinoma: state of the state.子宫浆液性乳头状癌:现状
Curr Oncol Rep. 2008 Nov;10(6):505-11. doi: 10.1007/s11912-008-0076-x.
9
Factors prognostic of survival in advanced-stage uterine serous carcinoma.晚期子宫浆液性癌生存的预后因素。
Gynecol Oncol. 2017 Jul;146(1):27-33. doi: 10.1016/j.ygyno.2017.04.018. Epub 2017 Apr 30.
10

引用本文的文献

本文引用的文献

2
ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma.ESGO/ESTRO/ESP 子宫内膜癌管理指南。
Int J Gynecol Cancer. 2021 Jan;31(1):12-39. doi: 10.1136/ijgc-2020-002230. Epub 2020 Dec 18.
4
Endometrial Cancer.子宫内膜癌
N Engl J Med. 2020 Nov 19;383(21):2053-2064. doi: 10.1056/NEJMra1514010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验