Suppr超能文献

一种基于诱发振荡时空动态开发可解释脑机接口的模糊框架

A Fuzzy Shell for Developing an Interpretable BCI Based on the Spatiotemporal Dynamics of the Evoked Oscillations.

作者信息

Lekova Anna, Chavdarov Ivan

机构信息

Institute of Robotics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 2, PO Box 79, Sofia 1113, Bulgaria.

出版信息

Comput Intell Neurosci. 2021 Apr 9;2021:6685672. doi: 10.1155/2021/6685672. eCollection 2021.

Abstract

Researchers in neuroscience computing experience difficulties when they try to carry out neuroanalysis in practice or when they need to design an explainable brain-computer interface (BCI) with quick setup and minimal training phase. There is a need of interpretable computational intelligence techniques and new brain states decoding for more understandable interpretation of the sensory, cognitive, and motor brain processing. We propose a general-purpose fuzzy software system shell for developing a custom EEG BCI system. It relies on the bursts of the ongoing EEG frequency power synchronization/desynchronization at scalp level and supports quick BCI setup by linguistic features, ad hoc fuzzy membership construction, explainable IF-THEN rules, and the concept of the Internet of Things (IoT), which makes the BCI system device and service independent. It has a potential for designing both passive and event-related BCIs with options for visual representation at scalp-source level in response to time. The feasibility of the proposed system has been proven by real experiments and bursts for and frequency power have been detected in real time in response to evoked visuospatial selective attention. The presence of the proposed new brain state decoding can be used as a feasible metric for interpretation of the spatiotemporal dynamics of the passive or evoked neural oscillations.

摘要

神经科学计算领域的研究人员在实际进行神经分析时,或者在需要设计一个具有快速设置和最短训练阶段的可解释脑机接口(BCI)时会遇到困难。需要可解释的计算智能技术和新的脑状态解码方法,以便更清晰地解释感觉、认知和运动脑处理过程。我们提出了一个通用的模糊软件系统框架,用于开发定制的脑电图BCI系统。它依赖于头皮水平上正在进行的脑电图频率功率同步/去同步的突发情况,并通过语言特征、特殊的模糊隶属度构建、可解释的“如果-那么”规则以及物联网(IoT)概念来支持快速BCI设置,这使得BCI系统与设备和服务无关。它有潜力设计被动式和事件相关的BCI,并可选择在头皮源水平上进行随时间变化的视觉表示。所提出系统的可行性已通过实际实验得到证明,并且在响应诱发的视觉空间选择性注意时实时检测到了 和 频率功率突发情况。所提出的新脑状态解码的存在可作为解释被动或诱发神经振荡的时空动态的可行指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac15/8055434/0dc59b578027/CIN2021-6685672.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验