Suppr超能文献

用于精准肿瘤学的小体积样本综合可计算分子诊断面板(C2Dx):细针穿刺获取的非小细胞肺癌的分子亚型分析

Comprehensive and Computable Molecular Diagnostic Panel (C2Dx) From Small Volume Specimens for Precision Oncology: Molecular Subtyping of Non-Small Cell Lung Cancer From Fine Needle Aspirates.

作者信息

Su Jing, Huang Lynn S, Barnard Ryan, Parks Graham, Cappellari James, Bellinger Christina, Dotson Travis, Craddock Lou, Prakash Bharat, Hovda Jonathan, Clark Hollins, Petty William Jeffrey, Pasche Boris, Chan Michael D, Miller Lance D, Ruiz Jimmy

机构信息

Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States.

Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States.

出版信息

Front Oncol. 2021 Apr 16;11:584896. doi: 10.3389/fonc.2021.584896. eCollection 2021.

Abstract

The (C2Dx) is a promising solution to address the need for a molecular pathological research and diagnostic tool for precision oncology utilizing small volume tumor specimens. We translate subtyping-related gene expression patterns of Non-Small Cell Lung Cancer (NSCLC) derived from public transcriptomic data which establish a highly robust and accurate subtyping system. The C2Dx demonstrates supreme performance on the NanoString platform using microgram-level FNA samples and has excellent portability to frozen tissues and RNA-Seq transcriptomic data. This workflow shows great potential for research and the clinical practice of cancer molecular diagnosis.

摘要

C2Dx是一种很有前景的解决方案,可满足利用小体积肿瘤标本进行精准肿瘤学分子病理学研究和诊断工具的需求。我们从公开的转录组数据中翻译非小细胞肺癌(NSCLC)的亚型相关基因表达模式,建立了一个高度稳健且准确的亚型分类系统。C2Dx在NanoString平台上使用微克级细针穿刺抽吸(FNA)样本时表现出卓越性能,并且对冷冻组织和RNA测序转录组数据具有出色的适用性。这种工作流程在癌症分子诊断的研究和临床实践中显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6301/8085404/556dbb307da0/fonc-11-584896-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验