Suppr超能文献

纳米尺度下观察到的老年骨质疏松症条件下板层骨中足突驱动的缺陷发育。

Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale.

机构信息

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.

Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany.

出版信息

ACS Biomater Sci Eng. 2021 Jun 14;7(6):2255-2267. doi: 10.1021/acsbiomaterials.0c01493. Epub 2021 May 3.

Abstract

The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC.

摘要

通过高分辨率电子显微镜研究了在老年骨质疏松症条件下,从患有股骨颈脆性骨折的患者股骨头中心采集的人小梁骨的降解机制。光学显微镜证据表明,存在骨代谢紊乱,导致骨结构严重且不可逆转的损伤。这些缺陷是由破骨细胞和因此破骨细胞足引起的。破骨细胞足在骨表面上形成典型的凹痕和直径约 300-400nm 的孔。对破骨细胞足在细胞外骨基质中引起的应力场进行了详细分析。计算得出的最大应力范围在几兆帕斯卡内,导致在破骨细胞足周围形成微裂纹。在胶合板结构的骨薄板边缘观察到羟磷灰石和游离胶原纤维的解体。在最终状态下,矿化胶原纤维分解为凝胶基质,同时伴随着纳米板层状磷灰石的分层,导致骨结构脆性和多孔。纳米板层状磷灰石聚集到大小达 10x20μm 的大羟磷灰石板上。增强的板层状生长可以通过皱襞边界区中两种机制的相互作用来解释:在破骨细胞足簇附近分层纳米板层状磷灰石的积累,以及由于缺乏过程导向的羧化骨钙素 cOC 的浓度,HAP 纳米板层状磷灰石的成核和随机生长加速。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/935f/8290401/9b73c547f4d4/ab0c01493_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验