Fan Qunping, Fu Huiting, Wu Qiang, Wu Ziang, Lin Francis, Zhu Zonglong, Min Jie, Woo Han Young, Jen Alex K-Y
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong.
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong.
Angew Chem Int Ed Engl. 2021 Jul 12;60(29):15935-15943. doi: 10.1002/anie.202101577. Epub 2021 Jun 9.
All-polymer solar cells (all-PSCs) progressed tremendously due to recent advances in polymerized small molecule acceptors (PSMAs), and their power conversion efficiencies (PCEs) have exceeded 15 %. However, the practical applications of all-PSCs are still restricted by a lack of PSMAs with a broad absorption, high electron mobility, low energy loss, and good batch-to-batch reproducibility. A multi-selenophene-containing PSMA, PFY-3Se, was developed based on a selenophene-fused SMA framework and a selenophene π-spacer. Compared to its thiophene analogue PFY-0Se, PFY-3Se shows a ≈30 nm red-shifted absorption, increased electron mobility, and improved intermolecular interaction. In all-PSCs, PFY-3Se achieved an impressive PCE of 15.1 % with both high short-circuit current density of 23.6 mA cm and high fill factor of 0.737, and a low energy loss, which are among the best values in all-PSCs reported to date and much better than PFY-0Se (PCE=13.0 %). Notably, PFY-3Se maintains similarly good batch-to-batch properties for realizing reproducible device performance, which is the first reported and also very rare for the PSMAs. Moreover, the PFY-3Se-based all-PSCs show low dependence of PCE on device area (0.045-1.0 cm ) and active layer thickness (110-250 nm), indicating the great potential toward practical applications.
由于聚合小分子受体(PSMA)的最新进展,全聚合物太阳能电池(all-PSC)取得了巨大进步,其功率转换效率(PCE)已超过15%。然而,all-PSC的实际应用仍然受到缺乏具有宽吸收、高电子迁移率、低能量损失和良好批次间重现性的PSMA的限制。基于硒吩稠合的SMA框架和硒吩π间隔基,开发了一种含多硒吩的PSMA,PFY-3Se。与噻吩类似物PFY-0Se相比,PFY-3Se表现出约30nm的红移吸收、增加的电子迁移率和改善的分子间相互作用。在all-PSC中,PFY-3Se实现了令人印象深刻的15.1%的PCE,具有23.6mA cm的高短路电流密度和0.737的高填充因子,以及低能量损失,这些都是迄今为止报道的all-PSC中的最佳值之一,并且比PFY-0Se(PCE = 13.0%)好得多。值得注意的是,PFY-3Se保持了类似的良好批次间性能,以实现可重现的器件性能,这是首次报道,对于PSMA来说也非常罕见。此外,基于PFY-3Se的all-PSC显示出PCE对器件面积(0.045 - 1.0cm)和活性层厚度(110 - 250nm)的低依赖性,表明其在实际应用方面具有巨大潜力。