Suppr超能文献

用于北大西洋露脊鲸叫声分类的数据增强。

Data augmentation for the classification of North Atlantic right whales upcalls.

机构信息

Institute for Big Data Analytics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.

出版信息

J Acoust Soc Am. 2021 Apr;149(4):2520. doi: 10.1121/10.0004258.

Abstract

Passive acoustic monitoring (PAM) is a useful technique for monitoring marine mammals. However, the quantity of data collected through PAM systems makes automated algorithms for detecting and classifying sounds essential. Deep learning algorithms have shown great promise in recent years, but their performance is limited by the lack of sufficient amounts of annotated data for training the algorithms. This work investigates the benefit of augmenting training datasets with synthetically generated samples when training a deep neural network for the classification of North Atlantic right whale (Eubalaena glacialis) upcalls. We apply two recently proposed augmentation techniques, SpecAugment and Mixup, and show that they improve the performance of our model considerably. The precision is increased from 86% to 90%, while the recall is increased from 88% to 93%. Finally, we demonstrate that these two methods yield a significant improvement in performance in a scenario of data scarcity, where few training samples are available. This demonstrates that data augmentation can reduce the annotation effort required to achieve a desirable performance threshold.

摘要

被动声学监测 (PAM) 是一种监测海洋哺乳动物的有用技术。然而,通过 PAM 系统收集的数据量很大,因此需要自动算法来检测和分类声音。深度学习算法近年来表现出了巨大的潜力,但它们的性能受到缺乏足够数量的标注数据来训练算法的限制。这项工作研究了当训练用于分类北大西洋露脊鲸(Eubalaena glacialis)呼叫的深度神经网络时,使用合成生成的样本扩充训练数据集的好处。我们应用了两种最近提出的扩充技术,SpecAugment 和 Mixup,并表明它们大大提高了我们模型的性能。精度从 86%提高到 90%,召回率从 88%提高到 93%。最后,我们证明在数据稀缺的情况下,这两种方法在性能上有显著的提高,在这种情况下,可用的训练样本很少。这表明数据扩充可以减少达到期望性能阈值所需的注释工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验