Koffi Agbelenko, Mijiyawa Fayçal, Koffi Demagna, Erchiqui Fouad, Toubal Lotfi
Centre de Recherche sur les Matériaux Lignocellulosiques, Université du Québec à Trois-Rivières, Boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada.
Laboratory of Biomaterials, University of Quebec at Abitibi-Témiscamingue, 445, Boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada.
Polymers (Basel). 2021 Apr 30;13(9):1459. doi: 10.3390/polym13091459.
Wood-plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber-polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.
木塑复合材料已经出现,并成为用合成碳纤维或玻璃纤维 - 聚合物增强的传统复合材料的替代品。木塑复合材料中使用了各种各样的木纤维,包括桦木纤维。桦木是一种常见的硬木树,生长在加拿大魁北克省等凉爽地区。研究了填料比例对高密度聚乙烯/桦木纤维复合材料力学性能、润湿性和热降解的影响。将高密度聚乙烯、桦木纤维和作为偶联剂的马来酸酐聚乙烯混合并压制以获得测试样品。进行了拉伸和弯曲试验、扫描电子显微镜、动态力学分析、差示扫描量热法、热重分析和表面能测量。当纤维含量达到50重量%时,拉伸弹性模量增加了210%,而弯曲模量增加了236%。水滴接触角始终超过90°,这意味着材料保持疏水性。热分解质量损失随纤维百分比成比例增加,纤维在比高密度聚乙烯更低的温度下降解。储能模量和损耗模量都随纤维比例增加。基于差示扫描量热法,纤维比例和偶联剂比例均不影响材料的熔融温度。