Wimalasuriya Lasan, Gunasekara Chamila, Robert Dilan, Setunge Sujeeva, O'Donnell Brian
Civil and Infrastructure Engineering Department, RMIT University, Melbourne, VIC 3000, Australia.
Eko Enviro Services Pty Ltd., Melbourne, VIC 3000, Australia.
Polymers (Basel). 2024 Dec 27;17(1):35. doi: 10.3390/polym17010035.
Millions of tonnes of plastic and glass waste are generated worldwide, with only a marginal amount fed back into recycling with the majority ending at landfills and stockpiles. Excessive waste production calls for additional recycling pathways. The technology being investigated in this study is based on recycled glass fines encapsulated in a high-density polyethylene (HDPE) matrix. Laboratory tests are performed on specimens at different manufacturing conditions using compression moulding, determining an optimised manufacturing method. The performance of composites prepared under different formulations is tested to identify an optimised mix design by means of statistical analysis. At this optimum ratio, flexural, tensile, and compressive strengths of 33.3 MPa, 19.6 MPa, and 12.8 MPa, are, respectively, recorded. Upon identifying the optimum dosage levels, the potential for employing HDPE from diverse origins are investigated. The microstructure, pore structure, and chemistry of optimised composite specimens are analysed to interpret the composite performance. The effective stress transfer in the composite is attributed to strong hydrogen bonds created by maleic anhydride leading to 37.6% and 8.5% improvements in compressive and flexural strengths, respectively. These research findings can facilitate the pathway for utilising plastic and glass waste in landfills/stockpiles for sustainable polymeric composites towards structural applications.
全球产生了数百万吨塑料和玻璃废料,只有少量被回收利用,大部分最终进入垃圾填埋场和堆放场。过多的废物产生需要更多的回收途径。本研究中所研究的技术基于封装在高密度聚乙烯(HDPE)基质中的再生玻璃细粉。使用压缩成型对不同制造条件下的试样进行实验室测试,确定优化的制造方法。对不同配方制备的复合材料的性能进行测试,通过统计分析确定优化的混合设计。在此最佳比例下,记录的弯曲强度、拉伸强度和压缩强度分别为33.3兆帕、19.6兆帕和12.8兆帕。确定最佳用量水平后,研究了使用不同来源HDPE的可能性。对优化后的复合材料试样的微观结构、孔隙结构和化学性质进行分析,以解释复合材料的性能。复合材料中有效的应力传递归因于马来酸酐形成的强氢键,分别使压缩强度和弯曲强度提高了37.6%和8.5%。这些研究结果有助于为在垃圾填埋场/堆放场利用塑料和玻璃废料制造用于结构应用的可持续聚合物复合材料开辟道路。