Oberst Sebastian, Martin Richard, Halkon Benjamin J, Lai Joseph C S, Evans Theodore A, Saadatfar Mohammed
Centre for Audio, Acoustics and Vibrations, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2040, Australia.
School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia.
J R Soc Interface. 2021 May;18(178):20200957. doi: 10.1098/rsif.2020.0957. Epub 2021 May 5.
Termites inhabit complex underground mounds of intricate stigmergic labyrinthine designs with multiple functions as nursery, food storage and refuge, while maintaining a homeostatic microclimate. Past research studied termite building activities rather than the actual material structure. Yet, prior to understanding how multi-functionality shaped termite building, a thorough grasp of submillimetre mechanistic architecture of mounds is required. Here, we identify for via granulometry and Fourier transform infrared spectroscopy analysis, preferential particle sizes related to coarse silts and unknown mixtures of organic/inorganic components. High-resolution micro-computed X-ray tomography and microindentation tests reveal wall patterns of filigree laminated layers and sub-millimetre porosity wrapped around a coarse-grained inner scaffold. The scaffold geometry, which is designed of a lignin-based composite and densely biocementitious stercoral mortar, resembles that of trabecula cancellous bones. Fractal dimension estimates indicate multi-scaled porosity, important for enhanced evaporative cooling and structural stability. The indentation moduli increase from the outer to the inner wall parts to values higher than those found in loose clays and which exceed locally the properties of anthropogenic cementitious materials. Termites engineer intricately layered biocementitious composites of high elasticity. The multiple-scales and porosity of the structure indicate a potential to pioneer bio-architected lightweight and high-strength materials.
白蚁栖息在具有复杂刺激反馈迷宫式设计的地下蚁丘中,这些蚁丘具有多种功能,如育婴室、食物储存室和避难所,同时维持着稳定的微气候。过去的研究关注白蚁的建造活动,而非实际的材料结构。然而,在理解多功能性如何塑造白蚁建筑之前,需要深入了解蚁丘的亚毫米级机械结构。在这里,我们通过粒度分析和傅里叶变换红外光谱分析,确定了与粗粉砂以及有机/无机成分未知混合物相关的优先颗粒尺寸。高分辨率微计算机X射线断层扫描和微压痕测试揭示了围绕粗粒内部支架包裹的细丝状叠层和亚毫米级孔隙的壁图案。该支架由木质素基复合材料和密集的生物胶结粪便砂浆设计而成,其几何形状类似于松质骨小梁。分形维数估计表明存在多尺度孔隙率,这对于增强蒸发冷却和结构稳定性很重要。压痕模量从外壁部分到内壁部分增加,其值高于松散粘土中的值,并且在局部超过了人造胶凝材料的性能。白蚁构建了具有高弹性的复杂分层生物胶结复合材料。该结构的多尺度和孔隙率表明其有潜力开创生物构建的轻质高强度材料。