Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS - Université de Paris, 75013 Paris, France.
Laboratoire Rhéologie et Procédés, UMR 5520 CNRS-UGA-G.INP - Domaine Universitaire, BP 53 38041 Grenoble Cedex 9, France.
Soft Matter. 2021 May 5;17(17):4525-4537. doi: 10.1039/d1sm00321f.
The deformability of red blood cells is an essential parameter that controls the rheology of blood as well as its circulation in the body. Characterizing the rigidity of the cells and their heterogeneity in a blood sample is thus a key point in the understanding of occlusive phenomena, particularly in the case of erythrocytic diseases in which healthy cells coexist with pathological cells. However, measuring intracellular rheology in small biological compartments requires the development of specific techniques. We propose a technique based on molecular rotors - viscosity-sensitive fluorescent probes - to evaluate the above key point. DASPI molecular rotor has been identified with spectral fluorescence properties decoupled from those of hemoglobin, the main component of the cytosol. After validation of the rotor as a viscosity probe in model fluids, we showed by confocal microscopy that, in addition to binding to the membrane, the rotor penetrates spontaneously and uniformly into red blood cells. Experiments on red blood cells whose rigidity is varied with temperature, show that molecular rotors can detect variations in their overall rigidity. A simple model allowed us to separate the contribution of the cytosol from that of the membrane, allowing a qualitative determination of the variation of cytosol viscosity with temperature, consistent with independent measurements of the viscosity of hemoglobin solutions. Our experiments show that the rotor can be used to study the intracellular rheology of red blood cells at the cellular level, as well as the heterogeneity of this stiffness in a blood sample. This opens up new possibilities for biomedical applications, diagnosis and disease monitoring.
红细胞的变形性是控制血液流变学及其在体内循环的一个重要参数。因此,描述细胞的刚性及其在血液样本中的异质性是理解闭塞现象的关键点,特别是在红细胞疾病的情况下,健康细胞与病理细胞共存。然而,在小生物隔室中测量细胞内流变学需要开发特定的技术。我们提出了一种基于分子转子 - 粘度敏感荧光探针 - 的技术来评估这一关键点。DASPI 分子转子已被确定具有与细胞溶质的主要成分血红蛋白分离的光谱荧光特性。在模型流体中验证了转子作为粘度探针的性能后,我们通过共焦显微镜表明,除了与膜结合外,转子还自发且均匀地渗透到红细胞中。对其刚性随温度变化的红细胞进行实验,表明分子转子可以检测其整体刚性的变化。一个简单的模型允许我们从膜的贡献中分离出细胞溶质的贡献,从而可以定性地确定细胞溶质粘度随温度的变化,与血红蛋白溶液粘度的独立测量结果一致。我们的实验表明,转子可用于在细胞水平上研究红细胞的细胞内流变学,以及血液样本中这种刚性的异质性。这为生物医学应用、诊断和疾病监测开辟了新的可能性。