Suppr超能文献

时间依赖性毛细血管流动中红细胞的形状转变与动力学

Red blood cell shape transitions and dynamics in time-dependent capillary flows.

作者信息

Recktenwald Steffen M, Graessel Katharina, Maurer Felix M, John Thomas, Gekle Stephan, Wagner Christian

机构信息

Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.

Biofluid Simulation and Modeling, Department of Physics, University of Bayreuth, Bayreuth, Germany.

出版信息

Biophys J. 2022 Jan 4;121(1):23-36. doi: 10.1016/j.bpj.2021.12.009. Epub 2021 Dec 9.

Abstract

The dynamics of single red blood cells (RBCs) determine microvascular blood flow by adapting their shape to the flow conditions in the narrow vessels. In this study, we explore the dynamics and shape transitions of RBCs on the cellular scale under confined and unsteady flow conditions using a combination of microfluidic experiments and numerical simulations. Tracking RBCs in a comoving frame in time-dependent flows reveals that the mean transition time from the symmetric croissant to the off-centered, nonsymmetric slipper shape is significantly faster than the opposite shape transition, which exhibits pronounced cell rotations. Complementary simulations indicate that these dynamics depend on the orientation of the RBC membrane in the channel during the time-dependent flow. Moreover, we show how the tank-treading movement of slipper-shaped RBCs in combination with the narrow channel leads to oscillations of the cell's center of mass. The frequency of these oscillations depends on the cell velocity, the viscosity of the surrounding fluid, and the cytosol viscosity. These results provide a potential framework to identify and study pathological changes in RBC properties.

摘要

单个红细胞(RBC)的动力学特性通过使其形状适应狭窄血管中的流动条件来决定微血管中的血流。在本研究中,我们结合微流控实验和数值模拟,在受限和非稳态流动条件下,从细胞尺度探索红细胞的动力学特性和形状转变。在随时间变化的流动中,在一个共同移动的坐标系中追踪红细胞,结果显示从对称新月形到偏心、非对称拖鞋形的平均转变时间明显快于相反的形状转变,后者表现出明显的细胞旋转。补充模拟表明,这些动力学特性取决于随时间变化的流动过程中红细胞膜在通道中的取向。此外,我们展示了拖鞋形红细胞的坦克履带式运动与狭窄通道相结合如何导致细胞质心的振荡。这些振荡的频率取决于细胞速度、周围流体的粘度和细胞质粘度。这些结果为识别和研究红细胞特性的病理变化提供了一个潜在的框架。

相似文献

1
Red blood cell shape transitions and dynamics in time-dependent capillary flows.
Biophys J. 2022 Jan 4;121(1):23-36. doi: 10.1016/j.bpj.2021.12.009. Epub 2021 Dec 9.
2
Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow.
Cells. 2023 Jun 1;12(11):1529. doi: 10.3390/cells12111529.
3
Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations.
Front Physiol. 2022 Jan 5;12:775584. doi: 10.3389/fphys.2021.775584. eCollection 2021.
4
Shape transitions of fluid vesicles and red blood cells in capillary flows.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14159-64. doi: 10.1073/pnas.0504243102. Epub 2005 Sep 26.
5
Confinement effect on the microcapillary flow and shape of red blood cells.
Biomicrofluidics. 2024 Apr 1;18(2):024104. doi: 10.1063/5.0197208. eCollection 2024 Mar.
6
Shape Transitions of Red Blood Cell under Oscillatory Flows in Microchannels.
Res Sq. 2023 Aug 30:rs.3.rs-3296659. doi: 10.21203/rs.3.rs-3296659/v1.
7
On the problem of slipper shapes of red blood cells in the microvasculature.
Microvasc Res. 2013 Jan;85:40-5. doi: 10.1016/j.mvr.2012.10.001. Epub 2012 Oct 10.
8
Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.
Int J Numer Method Biomed Eng. 2013 Jan;29(1):114-28. doi: 10.1002/cnm.2501. Epub 2012 Jun 25.
9
Tank-treading and tumbling frequencies of capsules and red blood cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046305. doi: 10.1103/PhysRevE.83.046305. Epub 2011 Apr 7.
10
Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
Microcirculation. 2011 Oct;18(7):562-73. doi: 10.1111/j.1549-8719.2011.00116.x.

引用本文的文献

1
Shape transitions of red blood cell under oscillatory flows in microchannels.
AIP Adv. 2025 Aug 11;15(8):085010. doi: 10.1063/5.0278720. eCollection 2025 Aug.
2
"Live" Nanomaterials Process Biomimetic Recognition and Assembly In Vivo.
Small Sci. 2023 Oct 10;3(11):2300032. doi: 10.1002/smsc.202300032. eCollection 2023 Nov.
3
Buckling of red blood cell membrane in narrow capillaries induces excessive wall shear stress.
Biophys J. 2025 Apr 15;124(8):1313-1322. doi: 10.1016/j.bpj.2025.03.010. Epub 2025 Mar 15.
6
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies.
Aging Dis. 2024 Jun 19;16(3):1242-1264. doi: 10.14336/AD.2024.0526.
7
8
Confinement effect on the microcapillary flow and shape of red blood cells.
Biomicrofluidics. 2024 Apr 1;18(2):024104. doi: 10.1063/5.0197208. eCollection 2024 Mar.
10
[Influence of pH value on tube formation of human dermal microvascular endothelial cells and its molecular mechanism].
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2023 Jul 20;39(7):662-670. doi: 10.3760/cma.j.cn501225-20220930-00429.

本文引用的文献

1
Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity.
Philos Trans A Math Phys Eng Sci. 2021 Oct 18;379(2208):20200395. doi: 10.1098/rsta.2020.0395. Epub 2021 Aug 30.
2
Optimizing pressure-driven pulsatile flows in microfluidic devices.
Lab Chip. 2021 Jun 29;21(13):2605-2613. doi: 10.1039/d0lc01297a.
3
Molecular rotors as intracellular probes of red blood cell stiffness.
Soft Matter. 2021 May 5;17(17):4525-4537. doi: 10.1039/d1sm00321f.
4
Similar but Distinct Roles of Membrane and Interior Fluid Viscosities in Capsule Dynamics in Shear Flows.
Cardiovasc Eng Technol. 2021 Apr;12(2):232-249. doi: 10.1007/s13239-020-00517-4. Epub 2021 Jan 22.
5
A system for the high-throughput measurement of the shear modulus distribution of human red blood cells.
Lab Chip. 2020 Aug 21;20(16):2927-2936. doi: 10.1039/d0lc00283f. Epub 2020 Jul 10.
6
On the effects of membrane viscosity on transient red blood cell dynamics.
Soft Matter. 2020 Jul 8;16(26):6191-6205. doi: 10.1039/d0sm00587h.
7
High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability.
Biophys J. 2019 Jul 9;117(1):14-24. doi: 10.1016/j.bpj.2019.05.022. Epub 2019 May 29.
8
Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
Phys Rev Lett. 2018 Sep 14;121(11):118103. doi: 10.1103/PhysRevLett.121.118103.
9
10
Theory and algorithms to compute Helfrich bending forces: a review.
J Phys Condens Matter. 2017 May 24;29(20):203001. doi: 10.1088/1361-648X/aa6313. Epub 2017 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验