Suppr超能文献

利用筛查人群和非筛查人群的数据建立癌症自然史的多状态生存模型。

A multistate survival model of the natural history of cancer using data from screened and unscreened population.

机构信息

Department of Applied Health Research, University College London, London, UK.

Department of Statistical Science, University College London, London, UK.

出版信息

Stat Med. 2021 Jul 20;40(16):3791-3807. doi: 10.1002/sim.8998. Epub 2021 May 5.

Abstract

One of the main aims of models using cancer screening data is to determine the time between the onset of preclinical screen-detectable cancer and the onset of the clinical state of the cancer. This time is called the sojourn time. One problem in using screening data is that an individual can be observed in preclinical phase or clinically diagnosed but not both. Multistate survival models provide a method of modeling the natural history of cancer. The natural history model allows for the calculation of the sojourn time. We developed a continuous-time Markov model and the corresponding likelihood function. The model allows for the use of interval-censored, left-truncated and right-censored data. The model uses data of clinically diagnosed cancers from both screened and nonscreened individuals. Parameters of age-varying hazards and age-varying misclassification are estimated simultaneously. The mean sojourn time is calculated from a micro-simulation using model parameters. The model is applied to data from a prostate screening trial. The simulation study showed that the model parameters could be estimated accurately.

摘要

使用癌症筛查数据的模型的主要目的之一是确定从临床前可检测癌症的发病到癌症的临床状态的发病之间的时间。这段时间被称为逗留时间。使用筛查数据存在的一个问题是,个体可以处于临床前阶段或临床诊断阶段,但不能同时处于两个阶段。多状态生存模型提供了一种建模癌症自然史的方法。自然史模型允许计算逗留时间。我们开发了一个连续时间马尔可夫模型和相应的似然函数。该模型允许使用区间删失、左截断和右删失数据。该模型使用来自筛查和非筛查个体的临床诊断癌症的数据。年龄变化的危害和年龄变化的错误分类的参数是同时估计的。使用模型参数的微观模拟计算平均逗留时间。该模型应用于前列腺筛查试验的数据。模拟研究表明,可以准确估计模型参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验