Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
Department of Health Science, Gettysburg College, Gettysburg, Pennsylvania, USA.
Blood Purif. 2022;51(2):111-121. doi: 10.1159/000513947. Epub 2021 May 5.
Patients with impaired citrate metabolism may experience citrate accumulation (CA), which causes life-threatening metabolic acidosis and hypocalcemia. CA poses a challenge for clinicians when deciding on the use of regional citrate anticoagulation (RCA) for patients with liver dysfunction. This study aimed to develop a prediction model integrating multiple clinical variables to assess the risk of CA in liver transplant patients.
This single-center prospective cohort study included postoperative liver transplant patients who underwent continuous renal replacement therapy (CRRT) with RCA. The study end point was CA. A prediction model was developed using a generalized linear mixed-effect model based on the Akaike information criterion. The predictive values were assessed using the receiver operating characteristic curve and bootstrap resampling (times = 500) to estimate the area under the curve (AUC) and the corresponding 95% confidence interval (CI). A nomogram was used to visualize the model.
This study included 32 patients who underwent 133 CRRT sessions with RCA. CA occurred in 46 CRRT sessions. The model included lactate, norepinephrine >0.1 μg/kg/min, alanine aminotransferase, total bilirubin, and standard bicarbonate, which were tested before starting each CRRT session and body mass index, diabetes mellitus, and chronic kidney disease as predictors. The AUC of the model was 0.867 (95% CI 0.786-0.921), which was significantly higher than that of the single predictor (p < 0.05). A nomogram visualized the prediction model.
The prediction model integrating multiple clinical variables showed a good predictive value for CA. A nomogram visualized the model for easy application in clinical practice.
柠檬酸代谢受损的患者可能会发生柠檬酸积聚(CA),从而导致危及生命的代谢性酸中毒和低钙血症。当决定对肝功能障碍患者使用局部枸橼酸抗凝(RCA)时,CA 给临床医生带来了挑战。本研究旨在开发一种整合多种临床变量的预测模型,以评估肝移植患者发生 CA 的风险。
本单中心前瞻性队列研究纳入了接受 RCA 持续肾脏替代治疗(CRRT)的术后肝移植患者。研究终点为 CA。使用基于赤池信息量准则的广义线性混合效应模型开发预测模型。使用接收者操作特征曲线和自举重采样(times=500)评估预测值,以估计曲线下面积(AUC)及其相应的 95%置信区间(CI)。使用列线图可视化模型。
本研究纳入了 32 名接受了 133 次 RCA 持续肾脏替代治疗的患者。46 次 CRRT 中发生了 CA。模型纳入了乳酸、去甲肾上腺素>0.1μg/kg/min、丙氨酸氨基转移酶、总胆红素和标准碳酸氢盐,这些指标在每次 CRRT 开始前进行检测,还纳入了体重指数、糖尿病和慢性肾脏病作为预测因素。模型的 AUC 为 0.867(95%CI 0.786-0.921),显著高于单个预测因素(p<0.05)。列线图可视化了预测模型。
整合了多种临床变量的预测模型对 CA 具有良好的预测价值。列线图可视化了模型,便于在临床实践中应用。