Zephyr AI, Washington, DC, USA.
Red Cell Partners, Washington, DC, USA.
Oncogene. 2021 May;40(21):3766-3770. doi: 10.1038/s41388-021-01807-4. Epub 2021 May 5.
Recent advances in machine learning promise to yield novel insights by interrogation of large datasets ranging from gene expression and mutation data to CRISPR knockouts and drug screens. We combined existing and new algorithms with available experimental data to identify potentially clinically relevant relationships to provide a proof of principle for the promise of machine learning in oncological drug discovery. Specifically, we screened cell line data from the Cancer Dependency Map for the effects of azithromycin, which has been shown to kill cancer cells in vitro. Our findings demonstrate a strong relationship between Kallikrein Related Peptidase 6 (KLK6) mutation status and the ability of azithromycin to kill cancer cells in vitro. While the application of azithromycin showed no meaningful average effect in KLK6 wild-type cell lines, statistically significant enhancements of cell death are seen in multiple independent KLK6-mutated cancer cell lines. These findings suggest a potentially valuable clinical strategy in patients with KLK6-mutated malignancies.
机器学习的最新进展有望通过对从基因表达和突变数据到 CRISPR 敲除和药物筛选等大型数据集的分析,提供新的见解。我们结合了现有的和新的算法以及可用的实验数据,以识别潜在的临床相关关系,为机器学习在肿瘤药物发现中的应用提供了原理证明。具体来说,我们筛选了癌症依赖图谱中的细胞系数据,以研究阿奇霉素的作用,阿奇霉素已被证明在体外杀死癌细胞。我们的研究结果表明,激肽释放酶相关肽 6(KLK6)突变状态与阿奇霉素在体外杀死癌细胞的能力之间存在很强的关系。虽然阿奇霉素的应用在 KLK6 野生型细胞系中没有显示出有意义的平均效果,但在多个独立的 KLK6 突变型癌细胞系中观察到细胞死亡的显著增强。这些发现提示在 KLK6 突变型恶性肿瘤患者中可能有潜在的有价值的临床策略。