Department of Materials Science & Engineering, Stanford University, Stanford, California, USA.
Department of Bioengineering, Stanford University, Stanford, California, USA.
J Biomed Mater Res A. 2021 Nov;109(11):2173-2186. doi: 10.1002/jbm.a.37203. Epub 2021 May 6.
Vaccines are critical for combating infectious diseases across the globe. Influenza, for example, kills roughly 500,000 people annually worldwide, despite annual vaccination campaigns. Efficacious vaccines must elicit a robust and durable antibody response, and poor efficacy often arises from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery influenza vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the co-delivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique dynamic physical characteristics whereby physicochemically distinct influenza hemagglutinin antigen and a toll-like receptor 7/8 agonist adjuvant could be co-delivered over prolonged timeframes that were tunable through simple alteration of the gel formulation. We show a relationship between hydrogel physical properties and the resulting immune response to immunization. When administered in mice, hydrogel-based vaccines demonstrated enhancements in the magnitude and duration of humoral immune responses compared to alum, a widely used clinical adjuvant system. We found stiffer hydrogel formulations exhibited slower release and resulted in the greatest improvements to the antibody response while also enabling significant adjuvant dose sparing. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.
疫苗对于全球范围内对抗传染病至关重要。例如,尽管每年都有流感疫苗接种活动,但流感仍在全球每年导致大约 50 万人死亡。有效的疫苗必须引发强大且持久的抗体反应,而低效通常是由于抗原和佐剂在免疫系统中的呈现时间控制不当引起的。在这项工作中,我们试图利用免疫系统在感染期间对延长的病原体暴露的自然反应,通过设计一种易于管理的缓慢递送来开发流感疫苗平台。我们利用可注射和自修复的聚合物-纳米颗粒(PNP)水凝胶平台来延长疫苗成分向免疫系统的共同传递。我们证明了这些水凝胶具有独特的动态物理特性,通过简单改变凝胶配方,可以在延长的时间内共同递送电化学性质不同的流感血凝素抗原和 Toll 样受体 7/8 激动剂佐剂。我们展示了水凝胶物理特性与免疫接种后免疫反应之间的关系。在小鼠中进行给药时,与广泛使用的临床佐剂系统 Alum 相比,水凝胶基疫苗增强了体液免疫反应的幅度和持续时间。我们发现更硬的水凝胶配方表现出较慢的释放,从而最大程度地提高了抗体反应,同时还能够显著节省佐剂剂量。总之,这项工作介绍了一种简单有效的疫苗递送平台,可提高流感亚单位疫苗的效力和持久性。