Suppr超能文献

在 氮饥饿条件下,黄嘌呤衍生代谢物增强子叶和幼苗生长中的叶绿素降解。

Xanthine-derived metabolites enhance chlorophyll degradation in cotyledons and seedling growth during nitrogen deficient condition in .

机构信息

Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea.

Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea.

出版信息

Plant Signal Behav. 2021 Jun 3;16(6):1913309. doi: 10.1080/15592324.2021.1913309. Epub 2021 May 6.

Abstract

Nitrogen (N) deficiency is a main environmental factor that induces early senescence. Cotyledons provide an important N source during germination and early seedling development. In this study, we observed that N deficient condition enhanced gene expression involved in purine catabolism in cotyledons of Chinese cabbage ( ssp. ). Seedlings grown with added allopurinol, an inhibitor of xanthine dehydrogenase, in the growth medium showed reduced chlorophyll degradation in cotyledons and lower fresh weight, compared with seedlings grown on normal medium. On the basis of these results, we speculated that xanthine-derived metabolites might affect both seedling growth and early senescence in cotyledons. To confirm this, seedlings were grown with exogenous xanthine to analyze the role of xanthine-derived metabolites under N deficient condition. Seedlings with xanthine as the sole N-source grew faster, and more cotyledon chlorophyll was broken down, compared with seedlings grown without xanthine. The expression levels of senescence- and purine metabolism-related genes in cotyledons were higher than those in seedlings grown without xanthine. These results indicate the possibility that xanthine plays a role as an activator in both purine catabolism and chlorophyll degradation in cotyledons under N deficient condition.

摘要

氮(N)缺乏是诱导早期衰老的主要环境因素。子叶在萌发和早期幼苗发育过程中提供重要的氮源。在这项研究中,我们观察到在白菜( ssp. )的子叶中,氮缺乏条件增强了参与嘌呤分解代谢的基因表达。与在正常培养基中生长的幼苗相比,在生长培养基中添加黄嘌呤脱氢酶抑制剂别嘌呤醇的幼苗,子叶中的叶绿素降解减少,鲜重降低。基于这些结果,我们推测黄嘌呤衍生的代谢物可能会影响幼苗生长和子叶的早期衰老。为了证实这一点,我们用外源黄嘌呤培养幼苗,以分析氮缺乏条件下黄嘌呤衍生代谢物的作用。与没有黄嘌呤的幼苗相比,以黄嘌呤作为唯一氮源的幼苗生长更快,子叶中的叶绿素分解更多。子叶中与衰老和嘌呤代谢相关的基因的表达水平高于没有黄嘌呤的幼苗。这些结果表明,在氮缺乏条件下,黄嘌呤可能作为一种激活剂在嘌呤分解代谢和叶绿素降解中发挥作用。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验