Suppr超能文献

一种改进的 PD-AsLS 方法,用于 EDXRF 分析中的基线估计。

An improved PD-AsLS method for baseline estimation in EDXRF analysis.

机构信息

Chengdu University of Technology, Chengdu, Sichuan 610000, China.

出版信息

Anal Methods. 2021 May 6;13(17):2037-2043. doi: 10.1039/d1ay00122a.

Abstract

Baseline correction is an important step in energy-dispersive X-ray fluorescence analysis. The asymmetric least squares method (AsLS), adaptive iteratively reweighted penalized least squares method (airPLS), and asymmetrically reweighted penalized least squares method (arPLS) are widely used to automatically select the data points for the baseline. Considering the parametric sensitivity of the aforementioned methods and the statistical characteristics of the X-ray energy spectrum, this paper proposes an asymmetrically reweighted penalized least squares method based on the Poisson distribution (PD-AsLS) to automatically correct the baseline of X-ray spectra. Monte Carlo (MC) simulation is used to obtain the background spectrum, and PD-AsLS is used to estimate the baseline of the background. The relative error and the absolute error between the simulated background and PD-AsLS estimated background are used to determine the accuracy of PD-AsLS. The correlation coefficient (COR) and the root mean square error (RMSE) between the estmated baseline and the real baseline are calculated, and results of PD-AsLS are compared with results of three other classical methods (arPLS, airPLS and AsLS) to evaluate the reliability of PD-AsLS. The results of PD-AsLS show that the COR is above 0.95 and RMSE is less than 6. The stability and the practicability of PD-AsLS are also evaluated in experiments. A sample is measured five time to get its X-ray energy spectra, and the coefficient of variation (CV) of the estimated baseline is smaller than that of measured spectra. Experiments show that PD-AsLS can estimate baselines better than arPLS without any overestimation. Those results indicate that PD-AsLS can reliably estimate the baselines of X-ray spectra and effectively suppress the statistical fluctuation.

摘要

基线校正在能量色散 X 射线荧光分析中是一个重要的步骤。不对称最小二乘法 (AsLS)、自适应迭代重加权惩罚最小二乘法 (airPLS) 和不对称重加权惩罚最小二乘法 (arPLS) 被广泛用于自动选择基线的数据点。考虑到上述方法的参数敏感性和 X 射线能谱的统计特征,本文提出了一种基于泊松分布 (PD-AsLS) 的不对称重加权惩罚最小二乘法,用于自动校正 X 射线光谱的基线。使用蒙特卡罗 (MC) 模拟获得背景光谱,并使用 PD-AsLS 估计背景的基线。通过模拟背景与 PD-AsLS 估计背景之间的相对误差和绝对误差来确定 PD-AsLS 的准确性。计算估计基线与真实基线之间的相关系数 (COR) 和均方根误差 (RMSE),并将 PD-AsLS 的结果与其他三种经典方法 (arPLS、airPLS 和 AsLS) 的结果进行比较,以评估 PD-AsLS 的可靠性。PD-AsLS 的结果表明,COR 大于 0.95,RMSE 小于 6。还在实验中评估了 PD-AsLS 的稳定性和实用性。通过五次测量获得样品的 X 射线能谱,估计基线的变异系数 (CV) 小于测量光谱的 CV。实验表明,PD-AsLS 可以在没有任何高估的情况下比 arPLS 更好地估计基线。这些结果表明,PD-AsLS 可以可靠地估计 X 射线光谱的基线,并有效地抑制统计波动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验