Suppr超能文献

Center-surround, orientation, and directional properties of turtle retinal horizontal cells.

作者信息

Adolph A R

机构信息

Eye Research Institute, Boston, MA 02114.

出版信息

Biol Cybern. 1988;58(6):373-85. doi: 10.1007/BF00361345.

Abstract

The spatial transfer functions (STF) of L-type horizontal cells (HC) in turtle retina were measured using drifting sine wave grafting stimuli. Two classes of STF were identified: low-pass and band-pass. A low-pass STF corresponds to a linespread function (LSF) having an excitatory center that attenuates monotonically with distance; a band-pass STF corresponds to a LSF with an excitatory center and an inhibitory surround. Two models of the surround inhibitory mechanism, based on retinal outer plexiform layer (OPL) anatomy, are tested experimentally: surround mediated lateral inhibition and surround modulated self-inhibition. In both types, sign inverting pathways are based on GABA feedback synapses, and sign conserving pathways are based on excitatory synapses and gap junctions. Temperature variation was used to modify synaptic properties and study their effect on STF. The low frequency limb of band-pass STF was most sensitive to temperature changes; its slope increased with decreasing temperature. Synaptic properties were also manipulated pharmacologically. Cutoff frequency of low-pass STF decreased from 0.5 to 0.4 cpmm during exogenous GABA. Picrotoxin (PTX) increases upper cutoff frequency and decreases low frequency limb slope in band-pass STF. Band-pass STF of a ganglion cell (GC) has higher upper and lower cutoff frequencies than a HC in the same retinal region, which corresponds to strong spatial convergence from HC to GC. Orientation sensitivity and directional selectivity were found in some HC. Differences between major and minor response axes in orientation sensitive HC were small, ca. 2 dB; orientation differences in directionally selective HC were also small (ca. 1-2 dB) but directional asymmetry was large (ca. 10-12 dB).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验