Engineering Geology, Department of Earth Sciences, ETH Zurich, 8092, Zurich, Switzerland.
Sci Rep. 2021 May 6;11(1):9722. doi: 10.1038/s41598-021-89015-8.
Rapid mapping of event landslides is crucial to identify the areas affected by damages as well as for effective disaster response. Traditionally, such maps are generated with visual interpretation of remote sensing imagery (manned/unmanned airborne systems or spaceborne sensors) and/or using pixel-based and object-based methods exploiting data-intensive machine learning algorithms. Recent works have explored the use of convolutional neural networks (CNN), a deep learning algorithm, for mapping landslides from remote sensing data. These methods follow a standard supervised learning workflow that involves training a model using a landslide inventory covering a relatively small area. The trained model is then used to predict landslides in the surrounding regions. Here, we propose a new strategy, i.e., a progressive CNN training relying on combined inventories to build a generalized model that can be applied directly to a new, unexplored area. We first prove the effectiveness of CNNs by training and validating on event landslides inventories in four regions after earthquakes and/or extreme meteorological events. Next, we use the trained CNNs to map landslides triggered by new events spread across different geographic regions. We found that CNNs trained on a combination of inventories have a better generalization performance, with a bias towards high precision and low recall scores. In our tests, the combined training model achieved the highest (Matthews correlation coefficient) MCC score of 0.69 when mapping landslides in new unseen regions. The mapping was done on images from different optical sensors, resampled to a spatial resolution of 6 m, 10 m, and 30 m. Despite a slightly reduced performance, the main advantage of combined training is to overcome the requirement of a local inventory for training a new deep learning model. This implementation can facilitate automated pipelines providing fast response for the generation of landslide maps in the post-disaster phase. In this study, the study areas were selected from seismically active zones with a high hydrological hazard distribution and vegetation coverage. Hence, future works should also include regions from less vegetated geographic locations.
事件性滑坡的快速制图对于识别受破坏影响的区域以及进行有效的灾害响应至关重要。传统上,这些地图是通过对遥感图像(有人/无人航空系统或星载传感器)进行目视解释和/或使用基于像素和基于对象的方法来生成的,这些方法利用了数据密集型机器学习算法。最近的研究工作探索了使用卷积神经网络(CNN),一种深度学习算法,从遥感数据中绘制滑坡图。这些方法遵循标准的监督学习工作流程,该流程涉及使用涵盖相对较小区域的滑坡目录来训练模型。然后,使用训练好的模型来预测周边地区的滑坡。在这里,我们提出了一种新策略,即基于组合目录的渐进式 CNN 训练,以构建可直接应用于新的、未开发区域的通用模型。我们首先通过在地震和/或极端气象事件后在四个地区的事件性滑坡目录上进行训练和验证来证明 CNN 的有效性。接下来,我们使用训练好的 CNN 来绘制分布在不同地理区域的新事件引发的滑坡。我们发现,在组合目录上训练的 CNN 具有更好的泛化性能,具有高准确率和低召回率得分的偏差。在我们的测试中,当在新的未见过的区域中绘制滑坡时,组合训练模型达到了最高(马修斯相关系数)MCC 得分 0.69。制图是在不同光学传感器的图像上完成的,重采样到 6m、10m 和 30m 的空间分辨率。尽管性能略有下降,但组合训练的主要优势在于克服了为训练新的深度学习模型而对本地目录的需求。这种实现方式可以促进自动化流程,为灾后阶段生成滑坡图提供快速响应。在本研究中,研究区域选自地震活动频繁、水文灾害分布高和植被覆盖度高的地区。因此,未来的工作还应包括来自植被覆盖度较低的地理区域。