Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, Galway, Ireland.
Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.
Sci Rep. 2021 May 6;11(1):9645. doi: 10.1038/s41598-021-89040-7.
In addition to the psychological depressive phenotype, major depressive disorder (MDD) patients are also associated with underlying immune dysregulation that correlates with metabolic syndrome prevalent in depressive patients. A robust integrative analysis of biological pathways underlying the dysregulated neural connectivity and systemic inflammatory response will provide implications in the development of effective strategies for the diagnosis, management and the alleviation of associated comorbidities. In the current study, focusing on MDD, we explored an integrative network analysis methodology to analyze transcriptomic data combined with the meta-analysis of biomarker data available throughout public databases and published scientific peer-reviewed articles. Detailed gene set enrichment analysis and complex protein-protein, gene regulatory and biochemical pathway analysis has been undertaken to identify the functional significance and potential biomarker utility of differentially regulated genes, proteins and metabolite markers. This integrative analysis method provides insights into the molecular mechanisms along with key glycosylation dysregulation underlying altered neutrophil-platelet activation and dysregulated neuronal survival maintenance and synaptic functioning. Highlighting the significant gap that exists in the current literature, the network analysis framework proposed reduces the impact of data gaps and permits the identification of key molecular signatures underlying complex disorders with multiple etiologies such as within MDD and presents multiple treatment options to address their molecular dysfunction.
除了心理抑郁表型外,重度抑郁症(MDD)患者还存在潜在的免疫失调,这与抑郁患者中常见的代谢综合征有关。对失调的神经连接和全身炎症反应的生物学途径进行强有力的综合分析,将为开发有效的诊断、管理和缓解相关合并症的策略提供启示。在本研究中,我们专注于 MDD,探索了一种综合网络分析方法来分析转录组数据,并结合公共数据库和已发表的科学同行评议文章中可用的生物标志物数据进行荟萃分析。我们进行了详细的基因集富集分析以及复杂的蛋白质-蛋白质、基因调控和生化途径分析,以确定差异调节基因、蛋白质和代谢物标记的功能意义和潜在生物标志物效用。这种综合分析方法深入了解了分子机制,以及改变中性粒细胞-血小板激活和失调的神经元存活维持和突触功能的关键糖基化失调。该网络分析框架提出了一个重要的观点,即当前文献中存在显著的差距,该框架减少了数据差距的影响,并允许识别多种病因(如 MDD 内)的复杂疾病的关键分子特征,并提供多种治疗选择来解决其分子功能障碍。