Suppr超能文献

矿物学的一个演化体系。第二部分:星际和太阳星云原生凝聚矿物学(>45.65亿年)

An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga).

作者信息

Morrison Shaunna M, Hazen Robert M

机构信息

Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U. S. A.

出版信息

Am Mineral. 2020 Oct 29;105(10):1508-1535. doi: 10.2138/am-2020-7447.

Abstract

UNLABELLED

The evolutionary system of mineralogy relies on varied physical and chemical attributes, including trace elements, isotopes, solid and fluid inclusions, and other information-rich characteristics, to understand processes of mineral formation and to place natural condensed phases in the deep-time context of planetary evolution. Part I of this system reviewed the earliest refractory phases that condense at > 1000 K within the turbulent expanding and cooling atmospheres of highly evolved stars. Part II considers the subsequent formation of primary crystalline and amorphous phases by condensation in three distinct mineral-forming environments, each of which increased mineralogical diversity and distribution prior to the accretion of planetesimals >4.5 billion years ago.

INTERSTELLAR MOLECULAR SOLIDS

(1)Varied crystalline and amorphous molecular solids containing primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the interstellar medium (10 < < 20 K; < 10 atm). With the possible exception of some nanoscale organic condensates preserved in carbonaceous meteorites, the existence of these phases is documented primarily by telescopic observations of absorption and emission spectra of interstellar molecules in radio, microwave, or infrared wavelengths.

NEBULAR AND CIRCUMSTELLAR ICE

(2)Evidence from infrared observations and laboratory experiments suggest that cubic HO ("cubic ice") condenses as thin crystalline mantles on oxide and silicate dust grains in cool, distant nebular and circumstellar regions where ~100 K.

PRIMARY CONDENSED PHASES OF THE INNER SOLAR NEBULA

(3)The earliest phase of nebular mineralogy saw the formation of primary refractory minerals that solidified through high-temperature condensation (1100 < < 1800 K; 10 < < 10 atm) in the solar nebula more than 4.565 billion years ago. These earliest mineral phases originating in our solar system formed prior to the accretion of planetesimals and are preserved in calcium-aluminum-rich inclusions, ultra-refractory inclusions, and amoeboid olivine aggregates.

摘要

未标注

矿物学的演化体系依赖于多种物理和化学属性,包括微量元素、同位素、固体和流体包裹体以及其他富含信息的特征,以了解矿物形成过程,并将自然凝聚相置于行星演化的漫长时间背景中。该体系的第一部分回顾了在高度演化恒星的湍流膨胀和冷却大气中于1000 K以上温度凝聚的最早难熔相。第二部分考虑了在三种不同的矿物形成环境中通过凝聚形成初级晶体和非晶相的后续过程,在45亿多年前小行星吸积之前,每种环境都增加了矿物学的多样性和分布。

星际分子固体

(1)观察到主要含有H、C、O和N的各种晶体和非晶分子固体在星际介质中的冷致密分子云中凝聚(10<T<20 K;P<10 atm)。除了保存在碳质陨石中的一些纳米级有机凝聚物外,这些相的存在主要通过对射电、微波或红外波长的星际分子吸收和发射光谱的望远镜观测来记录。

星云和星周冰

(2)红外观测和实验室实验的证据表明,立方HO(“立方冰”)在温度约为100 K的凉爽、遥远的星云和星周区域,以薄晶体外壳的形式凝聚在氧化物和硅酸盐尘埃颗粒上。

内太阳系星云的初级凝聚相

(3)星云矿物学的最早阶段见证了初级难熔矿物的形成,这些矿物在45.65亿多年前的太阳星云中通过高温凝聚(1100<T<1800 K;10<P<10 atm)而固化。这些起源于我们太阳系的最早矿物相在小行星吸积之前形成,并保存在富含钙铝的包体、超难熔包体和似变形橄榄石集合体中。

相似文献

2
An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga).
Am Mineral. 2020 Apr 29;105(5):627-651. doi: 10.2138/am-2020-7173.
3
An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma).
Am Mineral. 2021 Mar;106(3):325-350. doi: 10.2138/am-2020-7564. Epub 2021 Mar 1.
4
Formation and processing of organics in the early solar system.
Space Sci Rev. 1999;90(1-2):275-88. doi: 10.1007/978-94-011-4211-3_25.
5
Multiple generations of grain aggregation in different environments preceded solar system body formation.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6608-6613. doi: 10.1073/pnas.1720167115. Epub 2018 Jun 11.
6
The carbon budget in the outer solar nebula.
Icarus. 1989;82:1-35. doi: 10.1016/0019-1035(89)90020-1.
7
Did a Complex Carbon Cycle Operate in the Inner Solar System?
Life (Basel). 2020 Sep 16;10(9):206. doi: 10.3390/life10090206.
8
Detection of organic matter in interstellar grains.
Orig Life Evol Biosph. 1997 Jun;27(1-3):53-78.
9
Origin of O-rich fine-grained Ca-Al-rich inclusions of different mineralogy and texture.
Chem Erde. 2019 Dec;79(4). doi: 10.1016/j.chemer.2019.125543.
10
First evidence for silica condensation within the solar protoplanetary disk.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7497-7502. doi: 10.1073/pnas.1722265115. Epub 2018 Jul 2.

引用本文的文献

1
Open-ended versus bounded evolution: Mineral evolution as a case study.
PNAS Nexus. 2024 Jun 25;3(7):pgae248. doi: 10.1093/pnasnexus/pgae248. eCollection 2024 Jul.
2
An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma).
Am Mineral. 2021 Mar;106(3):325-350. doi: 10.2138/am-2020-7564. Epub 2021 Mar 1.
3
Historical natural kinds and mineralogy: Systematizing contingency in the context of necessity.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2015370118.

本文引用的文献

1
An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga).
Am Mineral. 2020 Apr 29;105(5):627-651. doi: 10.2138/am-2020-7173.
2
Smallest water clusters supporting the ice I structure.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24383-24385. doi: 10.1073/pnas.1918178116. Epub 2019 Nov 18.
3
The end of ice I.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24413-24419. doi: 10.1073/pnas.1914254116. Epub 2019 Nov 4.
4
CHONDRITES AND THEIR COMPONENTS: RECORDS OF EARLY SOLAR SYSTEM PROCESSES.
Meteorit Planet Sci. 2019 Aug;54(8):1647-1691. doi: 10.1111/maps.13350. Epub 2019 Jul 23.
5
Astrophysical detection of the helium hydride ion HeH.
Nature. 2019 Apr;568(7752):357-359. doi: 10.1038/s41586-019-1090-x. Epub 2019 Apr 17.
6
Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets.
Space Sci Rev. 2018 Feb;214(1). doi: 10.1007/s11214-018-0474-9. Epub 2018 Jan 23.
7
Advances in the experimental exploration of water's phase diagram.
J Chem Phys. 2019 Feb 14;150(6):060901. doi: 10.1063/1.5085163.
8
Clathrate hydrates in interstellar environment.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1526-1531. doi: 10.1073/pnas.1814293116. Epub 2019 Jan 10.
9
First evidence for silica condensation within the solar protoplanetary disk.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7497-7502. doi: 10.1073/pnas.1722265115. Epub 2018 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验