Morrison Shaunna M, Hazen Robert M
Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U. S. A.
Am Mineral. 2020 Oct 29;105(10):1508-1535. doi: 10.2138/am-2020-7447.
The evolutionary system of mineralogy relies on varied physical and chemical attributes, including trace elements, isotopes, solid and fluid inclusions, and other information-rich characteristics, to understand processes of mineral formation and to place natural condensed phases in the deep-time context of planetary evolution. Part I of this system reviewed the earliest refractory phases that condense at > 1000 K within the turbulent expanding and cooling atmospheres of highly evolved stars. Part II considers the subsequent formation of primary crystalline and amorphous phases by condensation in three distinct mineral-forming environments, each of which increased mineralogical diversity and distribution prior to the accretion of planetesimals >4.5 billion years ago.
(1)Varied crystalline and amorphous molecular solids containing primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the interstellar medium (10 < < 20 K; < 10 atm). With the possible exception of some nanoscale organic condensates preserved in carbonaceous meteorites, the existence of these phases is documented primarily by telescopic observations of absorption and emission spectra of interstellar molecules in radio, microwave, or infrared wavelengths.
(2)Evidence from infrared observations and laboratory experiments suggest that cubic HO ("cubic ice") condenses as thin crystalline mantles on oxide and silicate dust grains in cool, distant nebular and circumstellar regions where ~100 K.
(3)The earliest phase of nebular mineralogy saw the formation of primary refractory minerals that solidified through high-temperature condensation (1100 < < 1800 K; 10 < < 10 atm) in the solar nebula more than 4.565 billion years ago. These earliest mineral phases originating in our solar system formed prior to the accretion of planetesimals and are preserved in calcium-aluminum-rich inclusions, ultra-refractory inclusions, and amoeboid olivine aggregates.
矿物学的演化体系依赖于多种物理和化学属性,包括微量元素、同位素、固体和流体包裹体以及其他富含信息的特征,以了解矿物形成过程,并将自然凝聚相置于行星演化的漫长时间背景中。该体系的第一部分回顾了在高度演化恒星的湍流膨胀和冷却大气中于1000 K以上温度凝聚的最早难熔相。第二部分考虑了在三种不同的矿物形成环境中通过凝聚形成初级晶体和非晶相的后续过程,在45亿多年前小行星吸积之前,每种环境都增加了矿物学的多样性和分布。
(1)观察到主要含有H、C、O和N的各种晶体和非晶分子固体在星际介质中的冷致密分子云中凝聚(10<T<20 K;P<10 atm)。除了保存在碳质陨石中的一些纳米级有机凝聚物外,这些相的存在主要通过对射电、微波或红外波长的星际分子吸收和发射光谱的望远镜观测来记录。
(2)红外观测和实验室实验的证据表明,立方HO(“立方冰”)在温度约为100 K的凉爽、遥远的星云和星周区域,以薄晶体外壳的形式凝聚在氧化物和硅酸盐尘埃颗粒上。
(3)星云矿物学的最早阶段见证了初级难熔矿物的形成,这些矿物在45.65亿多年前的太阳星云中通过高温凝聚(1100<T<1800 K;10<P<10 atm)而固化。这些起源于我们太阳系的最早矿物相在小行星吸积之前形成,并保存在富含钙铝的包体、超难熔包体和似变形橄榄石集合体中。