Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, HI 96822;
Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, HI 96822.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6608-6613. doi: 10.1073/pnas.1720167115. Epub 2018 Jun 11.
The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.
太阳系是由星际尘埃和气体在分子云中形成的。天文观测表明,典型的星际尘埃由无定形(-)硅酸盐和有机碳组成。用于实验室研究的真正物理样本将为太阳系形成提供前所未有的深入了解,但它们大部分已经被破坏。最有可能保存幸存的太阳前尘埃的地方是受干扰最小的外星物质,即可能起源于彗星的星际尘埃颗粒(IDP)。彗星 IDP 含有丰富的亚微米硅酸盐颗粒,称为 GEMS(玻璃包裹金属和硫化物),被认为是无碳的。其中一些含有可检测到的来自其他恒星的同位素异常硅酸盐成分,证明它们是从星际介质中继承下来的保存尘埃。然而,人们对于 GEMS 是否大多数是在太阳系形成之前形成的,还是在太阳星云通过高温(>1300 K)气体的冷凝形成的,存在争议。在这里,我们以单纳米级分辨率绘制了 IDP 的成分图,并发现 GEMS 含有有机碳。制图揭示了两代颗粒聚集,这是从尘埃颗粒到星子的生长的关键过程,由碳介导。GEMS 颗粒,一些带有被有机碳覆盖的硅酸盐亚颗粒,构成了第一代聚集物。这些聚集物(和其他颗粒)被低密度有机碳基质包裹,表明存在第二代聚集。由于这种有机碳在高于约 450 K 时会热分解,因此 GEMS 不可能在热太阳星云中原地吸积形成,而是在冷的太阳前分子云和/或外原行星盘中形成。我们认为,GEMS 与原位冷凝并在多个分子云中循环的幸存星际尘埃一致。