Suppr超能文献

伊朗患者对气管插管后气管狭窄随访计划依从性的预测:两种数据挖掘技术的应用

Prediction of Patient's Adherence to the Post-Intubation Tracheal Stenosis Follow-up Plan in Iran: Application of two Data Mining Techniques.

作者信息

Farzanegan Behrooz, Farzanegan Roya, Behgam Shadmehr Mohammad, Lajevardi Seyedamirmohammad, Niakan Kalhori Sharareh R

机构信息

Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Faculty of Health, York University, Toronto, Canada.

出版信息

Tanaffos. 2020 Dec;19(4):330-339.

Abstract

BACKGROUND

Timely diagnosis of post-intubation tracheal stenosis (PITS), which is one of the most serious complications of endotracheal intubation, may change its natural history. To prevent PITS, patients who are discharged from the intensive care unit (ICU) with more than 24 hours of intubation should be actively followed-up for three months after extubation. This study aimed to evaluate the abilities of artificial neural network (ANN) and decision tree (DT) methods in predicting the patients' adherence to the follow-up plan and revealing the knowledge behind PITS screening system development requirements.

MATERIALS AND METHODS

In this cohort study, conducted in 14 ICUs during 12 months in ten cities of Iran, the data of 203 intubated ICU-discharged patients were collected. Ten influential factors were defined for adherences to the PITS follow-up (P<0.05). A feed-forward multilayer perceptron algorithm was applied using a training set (two-thirds of the entire data) to develop a model for predicting the patients' adherence to the follow-up plan three months after extubation. The same data were used to develop a C5.0 DT in MATLAB 2010a. The remaining one-third of data was used for model testing, based on the holdout method.

RESULTS

The accuracy, sensitivity, and specificity of the developed ANN classifier were 83.30%, 72.70%, and 89.50%, respectively. The accuracy of the DT model with five nodes, 13 branches, and nine leaves (producing nine rules for active follow-up) was 75.36%.

CONCLUSION

The developed classifier might aid care providers to identify possible cases of non-adherence to the follow-up and care plans. Overall, active follow-up of these patients may prevent the adverse consequences of PITS after ICU discharge.

摘要

背景

气管插管后气管狭窄(PITS)是气管内插管最严重的并发症之一,及时诊断可能会改变其自然病程。为预防PITS,从重症监护病房(ICU)出院且插管时间超过24小时的患者,应在拔管后积极随访三个月。本研究旨在评估人工神经网络(ANN)和决策树(DT)方法在预测患者对随访计划的依从性以及揭示PITS筛查系统开发要求背后知识方面的能力。

材料与方法

在伊朗十个城市的14个ICU进行的这项队列研究中,收集了203例插管后从ICU出院患者的数据。定义了十个影响PITS随访依从性的因素(P<0.05)。使用前馈多层感知器算法,利用训练集(全部数据的三分之二)建立一个模型,用于预测患者拔管后三个月对随访计划的依从性。使用相同的数据在MATLAB 2010a中开发一个C5.0决策树。其余三分之一的数据用于基于留出法的模型测试。

结果

所开发的ANN分类器的准确率、灵敏度和特异性分别为83.30%、72.70%和89.50%。具有五个节点、13个分支和九个叶节点(产生九条积极随访规则)的决策树模型的准确率为75.36%。

结论

所开发的分类器可能有助于医护人员识别可能不遵守随访和护理计划的病例。总体而言,对这些患者进行积极随访可能预防ICU出院后PITS的不良后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/8088141/43a4dd90d1ec/Tanaffos-19-330-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验