Huang Xiaoxi, Sayed Shehrin, Mittelstaedt Joseph, Susarla Sandhya, Karimeddiny Saba, Caretta Lucas, Zhang Hongrui, Stoica Vladimir A, Gosavi Tanay, Mahfouzi Farzad, Sun Qilong, Ercius Peter, Kioussis Nicholas, Salahuddin Sayeef, Ralph Daniel C, Ramesh Ramamoorthy
Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
Adv Mater. 2021 Jun;33(24):e2008269. doi: 10.1002/adma.202008269. Epub 2021 May 7.
Spin-orbit torques (SOTs) that arise from materials with large spin-orbit coupling offer a new pathway for energy-efficient and fast magnetic information storage. SOTs in conventional heavy metals and topological insulators are explored extensively, while 5d transition metal oxides, which also host ions with strong spin-orbit coupling, are a relatively new territory in the field of spintronics. An all-oxide, SrTiO (STO)//La Sr MnO (LSMO)/SrIrO (SIO) heterostructure with lattice-matched crystal structure is synthesized, exhibiting an epitaxial and atomically sharp interface between the ferromagnetic LSMO and the high spin-orbit-coupled metal SIO. Spin-torque ferromagnetic resonance (ST-FMR) is used to probe the effective magnetization and the SOT efficiency in LSMO/SIO heterostructures grown on STO substrates. Remarkably, epitaxial LSMO/SIO exhibits a large SOT efficiency, ξ = 1, while retaining a reasonably low shunting factor and increasing the effective magnetization of LSMO by ≈50%. The findings highlight the significance of epitaxy as a powerful tool to achieve a high SOT efficiency, explore the rich physics at the epitaxial interface, and open up a new pathway for designing next-generation energy-efficient spintronic devices.
具有大自旋轨道耦合的材料所产生的自旋轨道转矩(SOTs)为高效且快速的磁信息存储提供了一条新途径。人们对传统重金属和拓扑绝缘体中的SOTs进行了广泛研究,而同样含有具有强自旋轨道耦合离子的5d过渡金属氧化物,在自旋电子学领域还是一个相对较新的领域。合成了一种具有晶格匹配晶体结构的全氧化物SrTiO(STO)//La Sr MnO(LSMO)/SrIrO(SIO)异质结构,在铁磁LSMO和高自旋轨道耦合金属SIO之间展现出外延且原子级尖锐的界面。利用自旋转矩铁磁共振(ST-FMR)来探测生长在STO衬底上的LSMO/SIO异质结构中的有效磁化强度和SOT效率。值得注意的是,外延LSMO/SIO表现出较大的SOT效率,ξ = 1,同时保持了合理的低分流因子,并使LSMO的有效磁化强度增加了约50%。这些发现突出了外延作为实现高SOT效率、探索外延界面丰富物理特性以及为设计下一代节能自旋电子器件开辟新途径的有力工具的重要性。