Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski M S, Kim Yong Baek, Ralph D C, Eom C B
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706.
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16186-16191. doi: 10.1073/pnas.1812822116. Epub 2019 Jul 26.
Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5 transition-metal oxide thin films can be an ideal building block for low-power spintronics.
自旋轨道耦合(SOC),即电子自旋与轨道角动量之间的相互作用,能够在界面处引发丰富的现象,特别是实现自旋电流与电荷电流的相互转换。传统重金属因其传导电子的强SOC而得到了广泛研究。然而,诸如外延五电子过渡金属复合氧化物这类同样具有强SOC的材料中的自旋轨道效应,在很大程度上仍未被报道。除了强SOC外,这些复合氧化物还能提供外延这一额外的调节旋钮,以通过晶体对称性来控制电子结构以及自旋到电荷的转换工程。在此,我们通过外延亚稳钙钛矿SrIrO₃中的自旋霍尔效应,展示了在铁磁体上室温下以极高效率产生自旋轨道转矩。我们首先预测,由于电子能带结构中的贝里曲率,正交晶系块状SrIrO₃中存在较大的本征自旋霍尔电导率。通过操控SOC与晶体对称性之间复杂的相互作用,我们通过外延应变来设计钙钛矿SrIrO₃中角共享氧八面体的倾斜度,从而控制自旋霍尔转矩比。这使得由于具有正交对称性的SrIrO₃中特有的结构各向异性而出现各向异性自旋霍尔效应。我们的实验结果证明了通过异质外延对称性设计方法来调控自旋轨道效应。因此,我们预计这些外延五过渡金属氧化物薄膜可成为低功耗自旋电子学的理想构建模块。