Suppr超能文献

源自动态几何非线性的强大声几何流

Powerful Acoustogeometric Streaming from Dynamic Geometric Nonlinearity.

作者信息

Zhang Naiqing, Horesh Amihai, Manor Ofer, Friend James

机构信息

Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, and Department of Surgery, School of Medicine, University of California San Diego, 9500 Gilman Dr. MC0411, La Jolla, California 92093, USA.

Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

出版信息

Phys Rev Lett. 2021 Apr 23;126(16):164502. doi: 10.1103/PhysRevLett.126.164502.

Abstract

Past forms of acoustic streaming, named after their progenitors Eckart (1948), Schlichting (1932), and Rayleigh (1884), serve to describe fluid and particle transport phenomena from the macro to micro-scale. Governed by the fluid viscosity, traditional acoustic streaming arises from second-order nonlinear coupling between the fluid's density and particle velocity, with the first-order acoustic wave time averaging to zero. We describe a form of acoustogeometric streaming that has a nonzero first-order contribution. Experimentally discovered in nanochannels of a height commensurate with the viscous penetration depth of the fluid in the channel, it arises from nonlinear interactions between the surrounding channel deformation and the leading order acoustic pressure field, generating flow pressures three orders of magnitude greater than any known acoustically mediated mechanism. It enables the propulsion of fluids against significant Laplace pressure, sufficient to produce 6  mm/s flow in a 130-150 nm tall nanoslit. We find quantitative agreement between theory and experiment across a variety of fluids and conditions, and identify the maximum flow rate with a channel height 1.59 times the viscous penetration depth.

摘要

过去的声流形式,以其先驱埃卡特(1948年)、施利希廷(1932年)和瑞利(1884年)命名,用于描述从宏观到微观尺度的流体和粒子传输现象。传统声流由流体粘度控制,源于流体密度与粒子速度之间的二阶非线性耦合,一阶声波的时间平均值为零。我们描述了一种具有非零一阶贡献的声几何流形式。它是在高度与通道中流体的粘性渗透深度相当的纳米通道中通过实验发现的,它源于周围通道变形与主导阶声压场之间的非线性相互作用,产生的流动压力比任何已知的声介导机制大三个数量级。它能够推动流体克服显著的拉普拉斯压力,足以在130 - 150纳米高的纳米狭缝中产生6毫米/秒的流动。我们发现在各种流体和条件下理论与实验之间存在定量一致性,并确定了通道高度为粘性渗透深度1.59倍时的最大流速。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验