Suppr超能文献

活体评估动脉壁各向异性的自发伸展波。

Spontaneous extension wave for in vivo assessment of arterial wall anisotropy.

机构信息

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.

Biomedical Engineering Programme, The University of Hong Kong, Hong Kong, China.

出版信息

Am J Physiol Heart Circ Physiol. 2021 Jun 1;320(6):H2429-H2437. doi: 10.1152/ajpheart.00756.2020. Epub 2021 May 7.

Abstract

Another type of natural wave, traced from longitudinal wall motion and propagation along the artery, is observed in our in vivo human carotid artery experiments. We coin it as extension wave (EW) and hypothesize that EW velocity (EWV) is associated with arterial longitudinal stiffness. The EW is thus assumed to complement the pulse wave (PW), whose velocity (PWV) is tracked from the radial wall displacement and linked to arterial circumferential stiffness through the Moens-Korteweg equation, as indicators for arterial mechanical anisotropy quantification by noninvasive high-frame-rate ultrasound. The relationship between directional arterial stiffnesses and the two natural wave speeds was investigated in wave theory, finite-element simulations based on isotropic and anisotropic arterial models, and in vivo human common carotid artery ( = 10) experiments. Excellent agreement between the theory and simulations showed that EWV was 2.57 and 1.03 times higher than PWV in an isotropic and an anisotropic carotid artery model, respectively, whereas in vivo EWV was consistently lower than PWV in all 10 healthy human subjects. A strong linear correlation was substantiated in vivo between EWV and arterial longitudinal stiffness quantified by a well-validated vascular-guided wave imaging technique (VGWI). We thereby proposed a novel index calculated as EWV/PWV as an alternative to assess arterial mechanical anisotropy. Simulations and in vivo results corroborated the effect of mechanical anisotropy on the propagation of spontaneous waves along the arterial wall. The proposed anisotropy index demonstrated the feasibility of the concurrent EW and PW imaged by high frame-rate ultrasound in grading of arterial wall anisotropy. An extension wave formed by longitudinal wall displacements was observed by high-frame-rate ultrasound in the human common carotid artery in vivo. A strong correlation between extension wave velocity and arterial longitudinal stiffness complements the well-established pulse wave, which is linked to circumferential stiffness, to noninvasively assess direction-dependent wall elasticity of the major artery. The proposed anisotropy index, which directly reflects arterial wall microstructure and function, might be a potential risk factor for screening (sub-) clinical cardiovascular diseases.

摘要

另一种源自动脉壁纵向运动并沿动脉传播的自然波在我们的人体颈动脉体内实验中被观察到。我们将其命名为伸展波(EW),并假设 EW 速度(EWV)与动脉的纵向弹性有关。因此,我们假设 EW 补充了脉搏波(PW),PW 速度通过径向壁位移进行跟踪,并通过莫恩斯-科特韦格方程与动脉周向弹性联系起来,作为通过非侵入性高帧率超声对动脉机械各向异性进行定量的指标。在波理论、基于各向同性和各向异性动脉模型的有限元模拟以及人体颈总动脉(n = 10)实验中,研究了方向性动脉弹性与两种自然波速之间的关系。理论与模拟之间的极好一致性表明,在各向同性和各向异性颈动脉模型中,EWV 分别比 PWV 高 2.57 倍和 1.03 倍,而在所有 10 名健康人体受试者中,体内 EWV 始终低于 PWV。在体内,EWV 与通过经过良好验证的血管引导波成像技术(VGWI)定量的动脉纵向弹性之间存在很强的线性相关性。因此,我们提出了一种新的指数,即 EWV/PWV,作为评估动脉机械各向异性的替代指标。模拟和体内结果证实了机械各向异性对动脉壁上自发波传播的影响。所提出的各向异性指数证明了通过高帧率超声同时成像 EW 和 PW 来分级动脉壁各向异性的可行性。在体内,通过高帧率超声观察到人体颈总动脉中由纵向壁位移形成的伸展波。伸展波速度与动脉纵向弹性之间的强相关性补充了已建立的脉搏波,脉搏波与周向弹性有关,可用于无创评估主要动脉的方向相关壁弹性。所提出的各向异性指数直接反映了动脉壁的微观结构和功能,可能是筛选(亚)临床心血管疾病的潜在危险因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验