Suppr超能文献

Muscarinic cholinergic-receptor stimulation of specific GTP hydrolysis related to adenylate cyclase activity in canine cardiac sarcolemma.

作者信息

Fleming J W, Watanabe A M

机构信息

Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis.

出版信息

Circ Res. 1988 Aug;63(2):340-50. doi: 10.1161/01.res.63.2.340.

Abstract

One component of muscarinic receptor inhibition of the function of cardiac ventricles is mediated by the inhibition of activated adenylate cyclase activity in sarcolemma. We have shown previously that muscarinic agonists inhibit GTP- but not Gpp(NH)p-activated adenylate cyclase activity, and various studies in other tissues indicate that nonhydrolyzable GTP analogues prevent inactivation of the enzyme. These data have suggested a role for GTP hydrolysis in the mechanism of inhibition of adenylate cyclase. The present study demonstrates that purified canine cardiac sarcolemma displays high-affinity GTPase activity that is reciprocally related to adenylate cyclase activity. The high-affinity GTPase activity was stimulated by muscarinic agonists and blocked by atropine. Furthermore, the one-half maximal effects of oxotremorine for binding to muscarinic receptors, stimulation of high-affinity GTPase activity, and inhibition of adenylate cyclase activity were similar. Muscarinic stimulation of GTPase activity and inhibition of adenylate cyclase activity required functional activity of the pertussis toxin (IAP) substrate(s). Treatment of sarcolemmal membranes with IAP attenuated the ability of oxotremorine to both stimulate high-affinity GTPase activity and inhibit adenylate cyclase activity. These studies indicate that muscarinic receptor stimulation of high-affinity GTPase activity dependent on functional IAP substrate(s) is closely linked to the mechanism of muscarinic inhibition of adenylate cyclase activity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验