Suppr超能文献

通过 LASSO 正则化逻辑回归对白血病发生过程中基因特异性转录抑制、激活和染色质相互作用的计算建模。

Computational Modeling of Gene-Specific Transcriptional Repression, Activation and Chromatin Interactions in Leukemogenesis by LASSO-Regularized Logistic Regression.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2109-2122. doi: 10.1109/TCBB.2021.3078128. Epub 2021 Dec 8.

Abstract

Many physiological and pathological pathways are dependent on gene-specific on/off regulation of transcription. Some genes are repressed, while others are activated. Although many previous studies have analyzed the mechanisms of gene-specific repression and activation, these studies are mainly based on the use of candidate genes, which are either repressed or activated, without simultaneously comparing and contrasting both groups of genes. There is also insufficient consideration of gene locations. Here we describe an integrated machine learning approach, using LASSO-regularized logistic regression, to model gene-specific repression and activation and the underlying contribution of chromatin interactions. LASSO-regularized logistic regression accurately predicted gene-specific transcriptional events and robustly detected the rate-limiting factors that underlie the differences of gene activation and repression. An example was provided by the leukemogenic transcription factor AML1-ETO, which is responsible for 10-15 percent of all acute myeloid leukemia cases. The analysis of AML1-ETO has also revealed novel networks of chromatin interactions and uncovered an unexpected role for E-proteins in AML1-ETO-p300 interactions and a role for the pre-existing gene state in governing the transcriptional response. Our results show that logistic regression-based probabilistic modeling is a promising tool to decipher mechanisms that integrate gene regulation and chromatin interactions in regulated transcription.

摘要

许多生理和病理途径依赖于基因特异性的转录开启和关闭调节。一些基因被抑制,而另一些基因被激活。尽管许多先前的研究分析了基因特异性抑制和激活的机制,但这些研究主要基于使用候选基因,这些基因要么被抑制,要么被激活,而没有同时比较和对比这两组基因。对基因位置的考虑也不够充分。在这里,我们描述了一种集成的机器学习方法,使用 LASSO-正则化逻辑回归来模拟基因特异性的抑制和激活以及染色质相互作用的潜在贡献。LASSO-正则化逻辑回归准确地预测了基因特异性转录事件,并稳健地检测了导致基因激活和抑制差异的限速因素。一个例子是白血病转录因子 AML1-ETO,它负责所有急性髓系白血病病例的 10-15%。对 AML1-ETO 的分析还揭示了染色质相互作用的新网络,并揭示了 E 蛋白在 AML1-ETO-p300 相互作用中的意外作用,以及预先存在的基因状态在调节转录反应中的作用。我们的结果表明,基于逻辑回归的概率建模是一种有前途的工具,可以破译整合基因调控和染色质相互作用的调控转录的机制。

相似文献

本文引用的文献

5
Computational Biology Solutions to Identify Enhancers-target Gene Pairs.用于识别增强子-靶基因对的计算生物学解决方案
Comput Struct Biotechnol J. 2019 Jun 14;17:821-831. doi: 10.1016/j.csbj.2019.06.012. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验