Harris Johnisha, Yadalam Pradeep Kumar, Ardila Carlos M
Periodontics, Saveetha Dental College and Hospital, Chennai, IND.
Periodontology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND.
Cureus. 2024 Oct 4;16(10):e70858. doi: 10.7759/cureus.70858. eCollection 2024 Oct.
Periodontitis, characterized by inflammation linked to apoptosis dysregulation, underscores the role of inhibitors of apoptosis proteins (IAPs) like survivin and cIAP1, implicated in disease progression and treatment resistance across various conditions. Our study aims to analyze the prediction of drug-gene interactions by machine learning techniques, combining regularized logistic regression and stochastic gradient descent (SGD) for efficient classification.
Data from Probes-Drugs.org on IAP-based drug-protein interactions underwent rigorous annotation and outlier removal. A data robot tool trained machine learning models, regularized logistic regression and SGD (https://app.datarobot.com/new). Network analysis employed Cytoscape to construct and analyze the IAP network, identifying key hub nodes crucial in periodontitis pathogenesis.
The constructed IAP network comprised 376 nodes and 556 edges, revealing intricate drug-gene interactions with an average of 2957 neighbors per node. Ten hub nodes were identified as pivotal in regulating biological processes specific to periodontitis, suggesting their potential as therapeutic targets and biomarkers. Predictive models demonstrated high accuracy, with gradient descent achieving 93% and regularized logistic regression achieving 92% in identifying drug-gene interactions within the IAP network.
These findings highlight the utility of computational methods in elucidating molecular mechanisms underlying periodontitis, offering insights into potential therapeutic strategies targeting IAP-related pathways. Future research should focus on validating hub genes experimentally and integrating multi-omics data to advance precision medicine approaches in periodontitis treatment.
牙周炎以与细胞凋亡失调相关的炎症为特征,凸显了凋亡抑制蛋白(IAPs)如survivin和cIAP1的作用,这些蛋白在多种疾病进展和治疗耐药性中具有重要意义。我们的研究旨在通过机器学习技术分析药物 - 基因相互作用的预测,结合正则化逻辑回归和随机梯度下降(SGD)以实现高效分类。
来自Probes - Drugs.org的基于IAP的药物 - 蛋白质相互作用数据经过严格注释和异常值去除。数据机器人工具训练机器学习模型,正则化逻辑回归和SGD(https://app.datarobot.com/new)。网络分析采用Cytoscape构建和分析IAP网络,识别在牙周炎发病机制中起关键作用的枢纽节点。
构建的IAP网络包含376个节点和556条边,揭示了复杂的药物 - 基因相互作用,每个节点平均有2957个邻居。十个枢纽节点被确定为调节牙周炎特异性生物学过程的关键节点,表明它们作为治疗靶点和生物标志物的潜力。预测模型显示出高准确性,梯度下降在识别IAP网络内的药物 - 基因相互作用方面达到93%,正则化逻辑回归达到92%。
这些发现突出了计算方法在阐明牙周炎潜在分子机制方面的实用性,为针对IAP相关途径的潜在治疗策略提供了见解。未来的研究应专注于通过实验验证枢纽基因,并整合多组学数据以推进牙周炎治疗中的精准医学方法。