Suppr超能文献

基于三维颅面扫描利用深度学习估算呼吸暂停低通气指数

Estimation of Apnea-Hypopnea Index Using Deep Learning On 3-D Craniofacial Scans.

作者信息

Hanif Umaer, Leary Eileen, Schneider Logan, Paulsen Rasmus, Morse Anne Marie, Blackman Adam, Schweitzer Paula, Kushida Clete A, Liu Stanley, Jennum Poul, Sorensen Helge, Mignot Emmanuel

出版信息

IEEE J Biomed Health Inform. 2021 Nov;25(11):4185-4194. doi: 10.1109/JBHI.2021.3078127. Epub 2021 Nov 5.

Abstract

Obstructive sleep apnea (OSA) is characterized by decreased breathing events that occur through the night, with severity reported as the apnea-hypopnea index (AHI), which is associated with certain craniofacial features. In this study, we used data from 1366 patients collected as part of Stanford Technology Analytics and Genomics in Sleep (STAGES) across 11 US and Canadian sleep clinics and analyzed 3D craniofacial scans with the goal of predicting AHI, as measured using gold standard nocturnal polysomnography (PSG). First, the algorithm detects pre-specified landmarks on mesh objects and aligns scans in 3D space. Subsequently, 2D images and depth maps are generated by rendering and rotating scans by 45-degree increments. Resulting images were stacked as channels and used as input to multi-view convolutional neural networks, which were trained and validated in a supervised manner to predict AHI values derived from PSGs. The proposed model achieved a mean absolute error of 11.38 events/hour, a Pearson correlation coefficient of 0.4, and accuracy for predicting OSA of 67% using 10-fold cross-validation. The model improved further by adding patient demographics and variables from questionnaires. We also show that the model performed at the level of three sleep medicine specialists, who used clinical experience to predict AHI based on 3D scan displays. Finally, we created topographic displays of the most important facial features used by the model to predict AHI, showing importance of the neck and chin area. The proposed algorithm has potential to serve as an inexpensive and efficient screening tool for individuals with suspected OSA.

摘要

阻塞性睡眠呼吸暂停(OSA)的特征是夜间呼吸事件减少,其严重程度以呼吸暂停低通气指数(AHI)报告,该指数与某些颅面特征相关。在本研究中,我们使用了作为斯坦福睡眠技术分析与基因组学(STAGES)一部分,在美国和加拿大11家睡眠诊所收集的1366名患者的数据,并分析了三维颅面扫描,目的是预测AHI,采用金标准夜间多导睡眠图(PSG)进行测量。首先,该算法在网格物体上检测预先指定的地标,并在三维空间中对齐扫描。随后,通过以45度增量渲染和旋转扫描生成二维图像和深度图。生成的图像作为通道堆叠,并用作多视图卷积神经网络的输入,该网络以监督方式进行训练和验证,以预测从PSG得出的AHI值。使用10折交叉验证,所提出的模型实现了每小时11.38次事件的平均绝对误差、0.4的皮尔逊相关系数以及预测OSA的准确率为67%。通过添加患者人口统计学信息和问卷中的变量,模型进一步改进。我们还表明,该模型的表现与三位睡眠医学专家相当,他们利用临床经验根据三维扫描显示预测AHI。最后,我们创建了模型用于预测AHI的最重要面部特征的地形图,显示了颈部和下巴区域的重要性。所提出的算法有潜力作为一种廉价且高效的筛查工具,用于疑似OSA的个体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验