Suppr超能文献

通过人工智能推进阻塞性睡眠呼吸暂停的诊断与筛查:一项系统综述

Advancements in Obstructive Sleep Apnea Diagnosis and Screening Through Artificial Intelligence: A Systematic Review.

作者信息

Giorgi Lucrezia, Nardelli Domiziana, Moffa Antonio, Iafrati Francesco, Di Giovanni Simone, Olszewska Ewa, Baptista Peter, Sabatino Lorenzo, Casale Manuele

机构信息

Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.

School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

出版信息

Healthcare (Basel). 2025 Jan 17;13(2):181. doi: 10.3390/healthcare13020181.

Abstract

BACKGROUND

Obstructive sleep apnea (OSA) is a prevalent yet underdiagnosed condition associated with a major healthcare burden. Current diagnostic tools, such as full-night polysomnography (PSG), pose a limited accessibility to diagnosis due to their elevated costs. Recent advances in Artificial Intelligence (AI), including Machine Learning (ML) and deep learning (DL) algorithms, offer novel potential tools for an accurate OSA screening and diagnosis. This systematic review evaluates articles employing AI-powered models for OSA screening and diagnosis in the last decade.

METHODS

A comprehensive electronic search was performed on PubMed/MEDLINE, Google Scholar, and SCOPUS databases. The included studies were original articles written in English, reporting the use of ML algorithms to diagnose and predict OSA in suspected patients. The last search was performed in June 2024. This systematic review is registered in PROSPERO (Registration ID: CRD42024563059).

RESULTS

Sixty-five articles, involving data from 109,046 patients, met the inclusion criteria. Due to the heterogeneity of the algorithms, outcomes were analyzed into six sections (anthropometric indexes, imaging, electrocardiographic signals, respiratory signals, and oximetry and miscellaneous signals). AI algorithms demonstrated significant improvements in OSA detection, with accuracy, sensitivity, and specificity often exceeding traditional tools. In particular, anthropometric indexes were most widely used, especially in logistic regression-powered algorithms.

CONCLUSIONS

The application of AI algorithms to OSA diagnosis and screening has great potential to improve patient outcomes, increase early detection, and lessen the load on healthcare systems. However, rigorous validation and standardization efforts must be made to standardize datasets.

摘要

背景

阻塞性睡眠呼吸暂停(OSA)是一种普遍存在但诊断不足的疾病,会带来重大的医疗负担。当前的诊断工具,如全夜多导睡眠图(PSG),由于成本高昂,诊断的可及性有限。人工智能(AI)的最新进展,包括机器学习(ML)和深度学习(DL)算法,为准确的OSA筛查和诊断提供了新的潜在工具。本系统评价评估了过去十年中采用人工智能驱动模型进行OSA筛查和诊断的文章。

方法

在PubMed/MEDLINE、谷歌学术和SCOPUS数据库上进行了全面的电子搜索。纳入的研究是用英文撰写的原创文章,报告了使用ML算法对疑似患者进行OSA诊断和预测的情况。最后一次搜索于2024年6月进行。本系统评价已在PROSPERO注册(注册号:CRD42024563059)。

结果

65篇文章符合纳入标准,涉及109,046名患者的数据。由于算法的异质性,结果被分为六个部分(人体测量指标、影像学、心电图信号、呼吸信号、血氧饱和度及其他杂项信号)。人工智能算法在OSA检测方面显示出显著改善,其准确性、敏感性和特异性通常超过传统工具。特别是,人体测量指标使用最为广泛,尤其是在逻辑回归驱动的算法中。

结论

将人工智能算法应用于OSA诊断和筛查有很大潜力改善患者预后、提高早期检测率并减轻医疗系统负担。然而,必须进行严格的验证和标准化工作以规范数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19e/11764519/015bd8b4b2ae/healthcare-13-00181-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验