School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
PLoS One. 2021 May 7;16(5):e0250952. doi: 10.1371/journal.pone.0250952. eCollection 2021.
The development of medical assisting tools based on artificial intelligence advances is essential in the global fight against COVID-19 outbreak and the future of medical systems. In this study, we introduce ai-corona, a radiologist-assistant deep learning framework for COVID-19 infection diagnosis using chest CT scans. Our framework incorporates an EfficientNetB3-based feature extractor. We employed three datasets; the CC-CCII set, the MasihDaneshvari Hospital (MDH) cohort, and the MosMedData cohort. Overall, these datasets constitute 7184 scans from 5693 subjects and include the COVID-19, non-COVID abnormal (NCA), common pneumonia (CP), non-pneumonia, and Normal classes. We evaluate ai-corona on test sets from the CC-CCII set, MDH cohort, and the entirety of the MosMedData cohort, for which it gained AUC scores of 0.997, 0.989, and 0.954, respectively. Our results indicates ai-corona outperforms all the alternative models. Lastly, our framework's diagnosis capabilities were evaluated as assistant to several experts. Accordingly, We observed an increase in both speed and accuracy of expert diagnosis when incorporating ai-corona's assistance.
基于人工智能技术的医疗辅助工具的发展对于全球抗击 COVID-19 疫情和未来的医疗系统至关重要。在本研究中,我们介绍了一种用于 COVID-19 感染诊断的人工智能辅助深度学习框架 ai-corona,该框架使用胸部 CT 扫描。我们的框架采用了基于 EfficientNetB3 的特征提取器。我们使用了三个数据集;CC-CCII 数据集、MasihDaneshvari 医院(MDH)队列和 MosMedData 队列。这些数据集总体上由 7184 个来自 5693 个受试者的扫描组成,包括 COVID-19、非 COVID 异常(NCA)、普通肺炎(CP)、非肺炎和正常类别。我们在 CC-CCII 数据集、MDH 队列和 MosMedData 队列的测试集中评估了 ai-corona,其 AUC 得分分别为 0.997、0.989 和 0.954。我们的结果表明,ai-corona 优于所有替代模型。最后,我们评估了框架作为几位专家辅助的诊断能力。因此,我们观察到在专家诊断中加入 ai-corona 的协助时,速度和准确性都有所提高。